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ABSTRACT

A new approach for modeling solar flare high energy emissions is developed in

which both thermal and nonthermal particles coexist and contribute to the radiation.

The thermal/nonthermal distribution function is interpreted physically by postulat-

ing the existence of DC current sheets in the flare region. These current sheets then

provide both primary plasma heating through Joule dissipation, and runaway elec-

tron acceleration. The physics of runaway acceleration is discussed. Several methods

are presented for obtaining approximations to the thermal/nonthermal distribution

function, both within the current sheets and outside of them. Theoretical hard X-ray

spectra are calculated, allowing for thermal bremsstrahlung from the heated plasma

external to the current sheets, as well as thick-target bremsstrahlung from runaway

electrons impinging on the chromosphere. A simple model for hard X-ray images of

two-ribbon flares is presented. Theoretical microwave gyrosynchrotron spectra are

calculated and analyzed, uncovering important new effects caused by the interplay

of thermal and nonthermal particles. The theoretical spectra are compared with

observed high resolution spectra of solar flares, and excellent agreement is found, in

both hard X-rays and microwaves. The future detailed application of this approach

to solar flares is discussed, as are possible refinements of this theory.
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Notation

(cgs units are used throughout)

A : Effective Area of emission, either thick-target bremsstrahlung or gyrosyn-

chrotron

a0+ : _-polarization coefficient for the o (+) and x (-) modes, p 64

AU = 1.5 × 1013 cm : 1 Astronomical Unit

B : Magnetic field strength

Bj : Induction Magnetic field strength, p 11

c : Speed of light

D : Line-of-sight depth of microwave emitting source, p 63

e : Charge of electron
E : Electric Field strength

ED = PthVth/e : Critical Dreicer electric field, p 10

E = (7 - 1) me2 : Kinetic energy of electron with momentum p, p 11

£co = (%o- 1) me2 : High energy cutoff for runaway electrons, p 11

Ec_ = (%_ - 1)mc 2 : Critical energy for runaway electron production, p 11

¢ : ltard X-ray photon energy
EM : Emission Measure for thermal bremsstrahlung, p 30

F(Eo) : Flux of nonthermal electrons above energy t_o, p 31

_'(_¢o) : Energy flux carried by nonthermal electrons, p 31

f : Electron Distribution Function

fbg : Distribution function of background electrons, outside of current sheet, p 15

fco : Distribution function of runaway electrons above C_o, p 18

fc8 : Distribution function of current sheet electrons, p 15, 22

fHdG : Hakim - deGroot distribution function for drifting electrons, p 22

fN,,m(Pco): Normalization factor for f_w, P 16, 17

f,_t : Distribution function of nonthermal electrons, p 23

frw : Distribution function of runaway electrons, p 13, 15, 17

fth : Distribution function of thermal electrons, p 23, 24

ft,_t : Distribution function of thermal/nonthermal electrons, p 25

_11I : Temperature-averaged Gaunt factor for free-free emission, p 30
H-n - Nonthermal microwave enhancement associated with n th harmonic, p 71

hu = E : Hard X-ray photon energy

I : Current, p 11

I : Radiation intensity, for bremsstrahlung, p 30, 31, or gyrosynchrotron, p 63, 64

I,_ : Photon flux with ¢ >_ n keV, p 52

J: Current density, p 9

xi



xii NOTATION

Js : Bessel function of order s, p 64

j(u) : Bremsstrahlung emissivity, p 30

j+ : Gyrosynchrotron emissivity for the o (+) and x (-) modes, p 63, 64
k : Boltzman's constant

L : Length of Current Sheet

/2 : Loss factor for particles escaping the Current Sheet, p 16, 17

e : Scale length of losses, p 17
m : Mass of electron

mc 2 = 511 keV : Rest energy of an electron

N : Density of plasma particles, usually electrons

Ne, Ni : Density of electrons, i th ionic species

Nth, Nnt : Density of Thermal, Nonthermal electrons, p 25

Nv : Density of plasma outside of current sheets, p 12

n+ : Plasma index of refraction for the o (+) and x (-) modes, p 64

NT = NonThermal, p 66

p = 7my : Momentum of electron

po : Initial momentum, p 13, 14

pco : ttigh energy cutoff momentum in current sheet, p 11

per : Critical momentum for electron runaway, p 10

Pdr : Current drift momentum, p 9

Pth : Thermal momentum of electrons, p 10

PC _ "Primary Component" of microwave spectrum, p 71

RJ = Rayleigh-Jeans portion of microwave spectrum, p 71

r L = mvj.c/eB : Larmor or gyroradius, p 11
ro = e2/mc 2 : Classical electron radius, p 30

s : Harmonic number, p 65

S : Source function for runaway electrons, p 16

sill = Solar Flux Unit = 10 -19 erg cm -2 sec -1 Hz -1, p 66

T : Temperature of plasma electrons

T± : Measure of perpendicular spreading of fr_ from numerical solution, p 17

tj : Plasma heating time scale, p 12

TIt - Thermal, p 66

TNT = Thermal / NonThermal, p 66
V : Plasma volume

Vj : Volume of current sheets, p 12
w : Width of current sheet

v = p/Tm : Electron velocity

Vth = k_/kT/m : Nonrelativistic electron thermal velocity, p 9

x, dx : Position in, element of current sheet

Zo : Retarded position in current sheet, p 17

Zi : Charge state of i th ionic species, p 11, 30
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NOTATION xiii

a : Momentum-dependence of current sheet losses ("Diffusion Index"), p 17

fl = p/Tmc = v/c

15: Spectral index for f,u, p 23

5r : Thickness of current sheet, p 11

¢= E/ED, p 10

77= 1/a : Electrical resistivity of the plasma, p 32

77+ : Single electron gyrosynchrotron emissivity, p 64

F : Runaway rate, p 11

7 = x/(p/mc) 2 + 1 : Lorentz factor of an electron with momentum p

7co = 7(Pco) = 7cT + eEL� mc2

7or = 7(PET)

7th = 7(Pth)

_:+ : Gyrosynchrotron absorption coefficient for the o (+) and x (-) modes, p 64

In A : Coulomb logarithm, p 9

t, : Frequency of microwave radiation

ub = eB/2rmc : Electron gyrofrequency, p 62, 64

Vp = x/Ne2/rm : Plasma frequency, p 61, 64

Vpe_k : Peak frequency of microwave spectrum, p 71

v'th = 41rNme 4 In A/P_h : Thermal collision frequency, p 9

vz = Vb/2 + _/L,_ + v_/4: Extraordinary mode cutoff frequency, p 64

vl, v2 : Transition frequencies in microwave spectrum, p 70

¢ : Pitch angle of electron with respect to magnetic field, p 64

II : Fractional microwave polarization, p 77

a = Ne2/mvth : Electrical conductivity of the plasma, p 9

O'BH : Bethe-Heitler cross section for bremsstrahlung, p 31

rj = e-2v_ 1 : Joule heating time scale, p 12

0 : Angle between wave normal and magnetic field, p 63

X_ : Reduced chi-square statistic, p 43

: Acceleration distance, p 14, 15
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Chapter 1

INTRODUCTION

Solar flares represent one of the most spectacular, powerful, and intriguing phe-

nomena in our solar system. A great flare can release > 1032 ergs, much of it explo-

sively, over a period of ,-_ 103 seconds, over an area of the sun's surface of perhaps

several times 1019 cm 2. Great flares can profoundly affect human activities, posing

life-threatening hazards to astronauts, disrupting communications both in space and

on the ground, and even knocking out entire metropolitan power grids as happened

in Toronto, Canada in March of 1989. At the other extreme, microfiares have been

observed down to the limits of instrumental sensitivity, releasing ,,_ 102s ergs in just

a few seconds. Two recent reviews are Dennis (1988) and Dennis and Schwartz

(1989). A good compendium of both observations and theory of solar flares, up

to 1988, is found in Tandberg-Hanssen and Emslie (1988). Elaborations on the

following background material may be found in these sources.

Almost all flares occur in or near so-called "active regions" on the sun, where

several sunspots and complicated magnetic field configurations may be present. Al-

though the actual triggering of a flare has never been observed, it is generally ac-

cepted that the source of energy for the flare phenomenon is the magnetic free

energy associated with nonpotential (i.e. current carrying) coronal magnetic fields,

which are rarely found outside of active regions. Supporting this view is the fact

that flares have been observed to occur in locations, within an active region, where

highly sheared magnetic fields are present (e.g. Hagyard et al. 1984; Venkatakrish-

nan et al. 1988). The magnetic free energy is converted to one or more other forms

of energy, in which it manifests itself: (1) radiations spanning the electromagnetic

spectrum from decametric radio to > 10 MeV gamma rays; (2) energetic particles

including electrons, ions, and neutrons; (3) heating of the local solar plasma up

to temperatures perhaps a hundredfold hotter than the quiet corona; and (4) mass

motions of solar plasmas including eruptive prominances and coronal mass ejections.

There is a great diversity among flares, above and beyond the energy and time

scale differences already mentioned. For instance, some produce copious numbers of

interplanetary particles, while others do not. Some produce gamma rays > 1 MeV,

others do not. Some flares are visible in white light, most are not. Some flares are

associated with a coronal mass ejection while most are not. Any given flare may

or may not produce metric radio bursts. Some but not all flares show radiation

bursts on a time scale of milliseconds. Some show very smooth time profiles, with

PRECEDING PAGE BLANK NOT FILMED



2 CHAPTER 1. INTRODUCTION

no rapid enhancements at all. Although most astronomers think of a solar flare as a

wen-defined phenomenon, any general description, except in the vaguest and most

qualitative terms, is bound to meet numerous observational exceptions.
Despite this great variety of flares, many of them do share some common charac-

teristics. Notable is the presence of a so-called "impulsive" phase, shown schemat-

ically in Figure 1.1. This phase is characterized by bursts of radiation from highly

energized electrons, and signals the "start" of a flare, although some precursory

phenomena may be observed first. Often in the largest and longest-lived events,

a brief (,,_ minutes) impulsive phase initiates the event, later to be followed by a

more gradual phase in which the flare slowly decays and emissions of the highest
energy electrons are largely absent. Many of the smaller and shorter-lived events

are purely impulsive in character. It is widely believed that the impulsively radiat-

ing particles derive their energy directly from the primary flare trigger and energy

release mechanism itself, and so studying their emissions can help to uncover the

underlying physics of flares. Many events show impulsive emission superposed on a

more gradually varying emission, leading to the possibility that more than one form
of energy release can operate simultaneously.

As depicted in Figure I:i, the impulsive phase burst emissions can be seen at

metric and microwave radio frequencies, at extreme ultraviolet wavelengths, and at
hard X-ray energies. The most extensively analyzed of these emissions are hard

X-rays (> 10 keV) produced via collisional bremsstrahlung, and microwaves (1-100

GtIz) produced via gyrosynchrotron radiation, since the electrons spiral along mag-

netic field lines in the corona. Although the energies of these radiations are very

different (a 10 GHz photon has -._ 10-8 keV), electrons of very similar energies are
required to produce them, being on the order of tens to few hundred keV. The time

profiles of these two impulsive emissions are often very complex, and yet well cor-

related with each other, as shown in Figure 1.2. They show fast (_ seconds) rise

times from preflare conditions, and "spikey" bursts of radiation which are usually
coincident in the two wavelength regimes to within a second or so.

This close correlation suggests that the hard X-rays and microwaves are two

manifestations of a single underlying phenomenon. For instance, the electrons which

produce these emissions may have been subjected to a common energization mech-

anism. The connection between the two time profiles has been much investigated

(e.g. Marsh et al. 1981; Wiehl et al. 1985; Lu and Petrosian 1989, 1990; Nitta et al.

1991), but no general and compelling explanation has been put forth. Recently,
Batchelor (1989, 1990) has uncovered some observational clues about the nature

of the microwave/hard X-ray correlation, but it is difficult to interpret what they
mean.

The first solar hard X-ray spectra were taken in three energy channels (Anderson

and Winckler 1962) The first regular observations of hard X-rays from flares were

made with the Orbiting Solar Observatory satellites in the 1960s and 1970s. Spectra
were typically taken in 5-10 energy channels between about 25 and 200 keV. Simi-

larly, solar patrol microwave spectra are taken at 3-6 frequencies between 1 GHz and

30 GIIz (cf. Kundu 1965; StYli et al. 1989). Because of the low spectral resolution

in both wavelength regimes, most analysis to date has focused on the time profiles

of the emission, in individual energy or frequency bands.

Nonetheless, models were constructed to fit the spectra as observed. It was
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Figure 1.2: A complex impulsive flare showing the close correlation between the hard X-ray

and microwave time profiles (from Kosugi, Dennis, and Kai 1988).

found that the steep hard X-ray spectra could be reasonably well fit with either one

of two basic models, and the radio observations could be made to be more or less

consistent with either.

The first model to arise, dubbed the "thermal" model, postulates that the pri-

mary energy release of a solar flare is used to impulsively heat the flaring plasma to

temperatures in excess of l0 s K. The hard X-rays are then interpreted as arising from

thermal bremsstrahlung. The general evolution of this model can be traced through:

Chubb, et al. 1966; Brown 1974; Crannell, et al. 1978; M£tzler 1978; Brown, Mel-

rose, and Spicer 1979; Batchelor, eta/. 1985.

The second model to arise, the "nonthermal" model, is currently favored by most

researchers. It postulates that the primary energy release of a solar flare is used

to accelerate a large fraction of the electrons in the flaring plasma to snprather-

mal energies. The hard X-rays are then interpreted as arising from nonthermal

bremsstrahlung, in either a thin-target (in the corona), or a thick-target (the elec-

tron "beam" enters the chromosphere from the corona). The evolution of this model

can be traced through: Holt and Ramaty 1969; Brown 1971; Lin and Hudson 1976;

Leach and Petrosian 1981; Lu and Petrosian 1988, 1989.

Recent works have summarized the triumphs and failings of each of these models,

both observationally (Dennis 1989) and theoretically (Tandberg-Hanssen and Emslie

1988) and there is no need to do so here. It must be mentioned, however, that to

date almost all modeling of flares has employed one or the other of these models,

pitting them against each other to determine which of them is most nearly correct.

Tandberg-IIanssen and Emslie (1988) put it thusly: "The question is whether the

[hard X-ray emitting] electrons form a high-energy component interacting with a

V
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cooler background plasma, or form part of a bulk-energized 'thermal' population.
Numerous observational tests to discriminate between these scenarios ... have been

devised. However, ...the question remains open, and we can but look forward to

more precise observational constraints that future generations of instruments can
provide".

Since 1980, observations in both hard X-rays and microwaves have achieved

tremendously improved spectral resolution. Hard X-ray spectra obtained with a

cooled, high-purity germanium detector (Lin et al. 1981; Lin and Schwartz 1987;

Emslie et al. 1989) have shown the simultaneous presence of thermal and nonthermal

components. Such a spectrum cannot be described with either a simple thermal or a

simple nonthermal model. Both are required. The high resolution microwave spectra

being obtained at Owens Valley Radio Observatory (St£1i et al. 1989) similarly show

many features that cannot be interpreted in terms of simple thermal or nonthermal
models.

It is a fundamental premise of this dissertation that the above-mentioned ei-

ther/or, thermal or nonthermal, approach to modeling solar flares is overly restric-

tive and somewhat misguided, as demonstrated by recent sophisticated observations.

Indeed, virtually all flare energization mechanisms one might think of will produce

both plasma heating and particle acceleration. In contrast to the above stated,

widely prevalent view of flares and flare modeling, a more accurate assessment is

given in Holman et al. (1989) which I quote at some length (see also ttolman 1986):

In the past there has been considerable controversy over thermal ver-

sus nonthermal models for flare hard X-ray and microwave emission.

It is apparent from both observational and theoretical considerations,

however, that both heating and particle acceleration will occur in any

given flare, and that both thermal and nonthermal processes are likely

to contribute to the hard X-ray and microwave emissions. Sorting out

the thermal and nonthermal contributions to flare emission is necessary

in order to identify the heating and acceleration mechanisms, and the

important transport processes that determine the character of the flare

emission. Hence, it is important that well-observed flares be analyzed

with this in mind, and that future observations be designed with this as
a primary goal.

This dissertation explores the possibility of marrying the two previously dis-

parate approaches (viz. thermal and nonthermal), making possible the sorting out

of their relative contributions. To accomplish this, I construct a single electron
distribution function having both thermal and nonthermal components, and then

use it to calculate hard X-ray and/or microwave emission spectra. These theoreti-

cal spectra are then compared with, fitted to, and used to interpret, high spectral

resolution data in both wavelength regimes.

The thermal/nonthermal distribution function is placed in a physically plausible

framework by postulating that the primary flare trigger and energy release mecha-

nism involves the presence of large scale Dc electric fields (current sheets) within the

flaring coronal plasma. This postulate has the advantage of being fully consistent

with the widely held view, mentioned earlier, that flares are powered by the free

energy available in current-carrying magnetic fields. In addition to consistency, this
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postulate represents perhaps the simplest physics which can simultaneously have

both thermal and nonthermal consequences. The current sheets heat the ambient

plasma, in which they are embedded, through Joule dissipation. The heated plasma

surrounding the current sheets then emits both thermal hard X-ray bremsstrahlung

and thermal gyrosynchrotron radiation. At the same time, a fraction of the electrons

within the current sheets undergo runaway acceleration. Some of the accelerated

electrons penetrate to denser regions of the solar atmosphere, where they emit non-
thermal thick-target hard X-ray bremsstrahlung. Others of the accelerated electrons

are pitch-angle scattered out of the current sheets, and emit nonthermal gyrosyn-
chrotron radiation. Thus, in this model, there are both thermal and nonthermal

aspects to both the hard X-ray and microwave emission that we observe. As we will

see, this "unified duality" of the thermal/nonthermal approach leads to some very

important observational consequences.

The existence of current sheets is an a priori postulate of this dissertation, but

the origins of such structures in the solar corona is currently an area of active research

(e.g. Syrovatskii 1981; van Ballegooijen 1985; Miki_ et al. 1989; Karpen et al. 1990;

Bhattacharjee and Wang 1991). For the development of the thermal/nonthermal

model in these pages, the importance of the current sheets is derived from their

plasma heating and particle acceleration capabilities, while their precise locations

and arrangements are of minimal importance. Nevertheless, it can be useful to have

in mind some picture of how current sheets might be incorporated into solar flare

models, as long as such a picture is not taken as dogma.

One possible arrangement is depicted in the accompanying cartoon (Figure 1.3).

In this scenario, a large current sheet is formed in the corona, perhaps through

some magnetic reconnection process. It is coallgned with the top of an arcade of

magnetic loops, shown as a continuous magnetic sheet, and probably includes some

microturbulence leading to anomalous resistivity. Any parallel magnetic field in the

current sheet itself is negligible. The local plasma, near the top of the arcade, is

Joule-heated, producing the observed thermal radiation, both in hard X-rays and
microwaves. Electrons are simultaneously accelerated by the electric field, and upon

being pitch-angle scattered out of the current sheet, stream down the legs of the

loops which comprise the arcade. These electrons will produce both additional

gyrosynchrotron radiation as they stream, and thick-target hard X-rays when they

impact the denser, cooler chromosphere. In addition, various plasma instabilities

could generate sufficient turbulence in the flaring plasma to provide a mechanism for

secondary, stochastic, particle acceleration. Finally, because of the unidirectionality

of the imposed electric field, there could be a gradient, along the length of the

arcade, in the energy of the scattered, streaming electrons. Some further discussion

of this picture may be found in §§3.2 and 3.5.
This constitutes one of many possible scenarios incorporating current sheets into

specific flare models. Another is to generate current structures along the length of an

individual magnetic loop, possibly through stresses and gradients built up by relative

motions of the footpoints of the loop. In this picture, many oppositely-directed cur-

rents are required, and the entire loop volume is heated. Microwaves would be gen-

erated throughout the loop volume, as would thermal hard X-ray bremsstrahlung.

Thick-target bremsstrahlung would be produced by all (including both thermal cur-

rent and runaway) electrons in the current sheets, as the current sheets inject them

i
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HIGHER ENERGY
ELECTRONS
AT THIS END

STOCHASTIC _

ACCELE_,_'"
IMPULSIVE HXR

(POSSIBLY
HIGHER <E>)

IMPULSIVE
HXR

IMPULSIVE HXR AT
FOOTPRINT RIBBONS

+

GRADUAL HEATING AND
STOCHASTIC ACCELERATION

NEAR TOP OF ARCADE

Figure 1.3: A possible solar flare scenario, incorporating current sheet heating and accel-

eration, as discussed in the text.

directly into the chromosphere.

The plan of this dissertation is as follows. Chapter 2 summarizes the physics

of current sheets and runaway electrons. In this chapter I also present the various

distribution functions to be used in later chapters, together with their derivations.

This chapter represents the "meat" of the thermal/nonthermal approach. Chapter

3 is devoted to the application of the thermal/nonthermal approach to hard X-ray

radiation, discussing both theoretical and observational consequences. Similarly,

Chapter 4 applies the model to the microwave regime, where it is shown that some

previously unexplainable phenomena can now be understood. Finally, in Chapter

5, I summarize the important results of this work, and point to a few of the many

possible future applications and extensions of the ideas presented throughout this

dissertation.
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Chapter 2

CURRENT SHEETS 

RU N AWAY S, &:
DISTRIBUTIONS

In this chapter I will give a brief overview of the physics of DC electric current

sheets. Following this, I will discuss and present the electron distribution function for

electrons within a current sheet, in both the runaway and bulk collisional regimes. I

will then discuss the distribution function for electrons outside of the current sheets.

Finally I will discuss limitations of these results, based on some recent, preliminary
work for finite-sized current sheets.

2.1 CURRENT SHEETS & RUNAWAY ELECTRONS

The following introduction to current sheets and runaway electrons is based on

Holman (1985) to which the reader is referred for further details.
The imposition of a weak external electric field/_ on a thermal plasma sets up a

current density f = -eNga_ = aft?, in which the bulk thermal population, of density

N, is displaced from equilibrium and moves with a drift velocity gd_, determined by

balancing the electric field force with thermal collisions, eE = mVdrtJth, where

4rrNe 4 In A

Vth -- m2v3 h (2.1)

is the thermal collision frequency, and Vth = v/-k--T/m is the electron thermal velocity

in a plasma of temperature T. The electrical conductivity of the plasma is a =

Ne2/mvth and In A = 14.7 - ln(N_/2T -1) is the Coulomb logarithm (Book 1987).
The restriction that the electric field be "weak" is the restriction that va_ << Vth, so

that the plasma is not greatly displaced en masse.

Magnetic fields are generally ignored when discussing current sheets, and I will
do the same. This is because current sheets, to be stable, must be in regions of the

plasma where either /_ = 0, or /_ll/_, so that /_ × /_ drifts are unable to disrupt

them. In the latter case, the spiralling motion of the charged particles around the

magnetic field line is also neglected, it being assumed that the Larmor radius is
much less than the thickness of a current sheet. This is justified below (eqn [2.14]).

9
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10 CHAPTER 2. CURRENT SHEETS, RUNAWAYS, & DISTRIBUTIONS

Every electron will experience electric field acceleration during its mean free time

between collisions. The collision frequency of an electron having arbitrary velocity

(of which eqn [2.1] is one case) is

4toNe 4 In A

_(v)- ._v3 (2.2)

From this we see that relatively higher energy electrons will suffer relatively fewer

collisions (eqn. [2.1]), thereby experiencing relatively greater acceleration by the

electric field, i.e. being pulled relatively farther out of the thermal distribution.

Electrons exceeding a critical velocity, vc_, at which the competing effects of collisions

and the electric field just counterbalance, will be freely accelerated, unhindered by

collisions. These are the runaway electrons. It is customary to express the electric

field strength as a fraction of the Dreicer field

ED----(mvth/e)uth--
47re 3

rn

for which a thermal electron will run away. We then have

= = _th Vth

Vcr V e E - -_
(2.4)

where • = E/ED. The restriction to a "weak" electric field is now expressed as • << 1.

These expressions can be made relativistically correct by substituting v _ p/m 7

with p the electron momentum and

= _/(plmc):+ 1 (2.5)

is the Lorentz factor. We will henceforth work entirely in momentum space, in which

equation (2.4) takes the form

Pcr (pth/mc)

mc - _• - (Pth]mc)2(1 -- •) (2.6)

and now

mc - \ kr - 1 . (2.7)

The critical momentum, pc_, (or critical velocity, vcr) approximately separates

the electrons into two classes, the collisional (having p < p_), and the collisionless

(p> p.).
Equation (2.6) implies that there are combinations of electric field strength and

temperature for which no runaways will be produced, to keep the solution real. In

order to generate runaways for a given temperature, T, we must have

• > \kT] (2.8)
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For a given electric field, the restriction on T is clearly

mc 2
T < e_. (2.9)k

This relativistic restriction on runaway production was first found by Connor and
Hastie (1975).

Given the electric field strength, and the length of the acceleration region, L,

there exists a maximum energy gain for a runaway electron beginning with p = Per,

and being freely accelerated for the entire length. This is

AEm_, = Coo - E_ = eEL = eeEDL (2.10)

where £ = (7 - 1) mc2 is the kinetic energy of an electron having Lorentz factor

7- Using equations (2.5) and (2.10) we find the momentum corresponding to the
high-energy cutoff,

{[pcolme = 7(pc ) + eELImc - 1 . (2.11)

At the end of the acceleration region, electrons having energies in excess of £_o are

expected to follow a Maxwellian distribution, having a higher temperature than

that of the bulk population, since these represent bulk thermal population electrons

injected at p ,,_p_r and transported through momentum space to p > pco-

Kinetic theory yields the following result for the relativistically accurate runaway

production rate, allowing for a background of ions having average charge 2; in units

of the proton's charge (Kruskal and Bernstein 1962; Connor and Hastie 1975; Cohen
1976; Singh 1977):

F=(0.3+1.5e)e_ (2'+l)exp _ _+_ - _+e Tee

(2.12)
For a current flowing along a finite-sized sheet of length L, width w, and thickness

6r (gr << w), observations of magnetic field strength in the solar corona constrain

the thickness as follows. The current produces an induction magnetic field, Bj =

(2z_/c)(I/w), where the current I = Jw6r. The induced magnetic field can be no

larger than the observed magnetic field, Ba _< B which leads to

-- e 109cm -3 cm. (2.13)

Thus current sheets are very thin structures. Other possible geometries are explored

in Holman (1985). Although thin, current sheets are still many Larmor radii across.

The Larmor (or gyro-) radius is given by rL = mv±c/eB, where v± is the component

of the particle's velocity perpendicular to the magnetic field. Taking the thermal

velocity for v±, the ratio of current sheet thickness to gyroradius is

6r B 2
--,-, 120 • (2.14)
rL e(N/IO9)(T/IO _) >> 1
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This justifies the neglect of spiralling motions in the treatment of runaway acceler-

ation.

The energy dissipated by a current density f is J./_ergs cm -3 s -1. Thus a

Joule heating time scale can be defined for a current sheet by

rj = NkT/( f . £) = e-2V_h 1 . (2.15)

In general, this is a lower limit for the plasma heating time since the total volume,

V, to be heated is usually larger than the volume of the current sheet, Vj : Zw(Sr.

Somewhat offsetting this is the fact that the plasma density outside of the sheet,

Nv, is generally less than the density, N, within the sheet. Thus a more accurate

estimate of the heating time scale for the flaring plasma is

tj _ rj . (2.16)

2.2 ELECTRON DISTRIBUTION FUNCTIONS IN

A CURRENT SHEET

Obtaining the distribution function, f, for electrons in a plasma subjected to a

weak external electric field is a formidable task. There are several factors, introduced

above, contributing to the complexity of the problem. To sum up the situation, the

distribution function is a drifting near-Maxwellian at the lowest momenta, becomes

increasingly non-Maxwellian as we go to higher momenta, is highly non-Maxwellian

throughout the runaway regime, until finally, above Pco, a Maxwellian again occurs.
Studies of such a distribution function have been carried out along two broad

avenues. The first involves making various simplifying assumptions, and then ana-

lytically deriving approximations to the distribution function, valid in one or more

regimes of momentum space. The second approach involves numerically solving the

Fokker-Planck equation for the electron distribution function, and involves a dif-

ferent set of assumptions. To date, both approaches have assumed the plasma to

be homogeneous and infinite in extent. Physical insight can be gained in both ap-

proaches by considering a test particle moving through an unchanging background

plasma, as in the discussion leading to equation (2.4) above.

The first important treatment of this problem was by Spitzer and H/irm (1953)

who determined f numerically. Their solution is still recognized to be valid for low

momenta, not much greater than Pth. For the weak electric fields of interest here,

this is important because it includes the effect of the drift momentum, Pdr. An

analytic form for f in this regime, including relativistic corrections, was derived by

Hakim (1967; deGroot et al. 1980).

The work of Dreicer (1959) brought to the fore the importance of the runaway

phenomenon, making necessary more sophisticated treatments than that of Spitzer

and H_rm. Numerous numerical studies have since been done (e.g. Kulsrud et al.

1973; Wiley and Hinton 1980; Wiley et al. 1980; Moghaddam-Taaheri et al. 1985;

Fuchs et al. 1986, 1988; MacNeice et al. 1991). The most sophisticated analytic

treatment is the unpublished work of Kruskal and Bernstein (1962; reproduced by

Cohen 1976). Their basic normalized result for the runaway rate remains valid and

i
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has been extended to include relativistic corrections (Singh 1977; Connor and Hastie

1975) (eqn [2.12] above).

All of the above-mentioned work, excepting that of MacNeice et al. is for an

infinite plasma, and is thus of limited usefulness in applications to the sun, where

finite-sized current sheets are believed to be important. Specifically, previous work

has not addressed the high-energy cutoff regime of the distribution function. In the

following sections I will draw on some of the above results, bringing them together in

a new way, so as to be useful in the following chapters for the study of solar flares, at

least in an approximate way. I will first address the distribution function of just the

collisionless, high-energy, runaway electrons in a finite current sheet, then expand

the discussion to include all of the current sheet electrons. Next, I will construct a

simple electron distribution function for the ambient plasma in which the current

sheets are embedded. In all of these derivations, I neglect any magnetic field /_,

which means either /_ = 0 or /_ [I /_ and the electrons' spiralling is unimportant.

Collective effects are also neglected. At the end of this chapter I will point out

the future improvements in this analysis that will be possible when the work of

MacNeice et al. is completed.

2.2.1 RUNAWAY ELECTRONS IN A CURRENT SHEET

Two different, but not equivalent, routes have been taken to analytically deriving

the distribution function, fr_, of runaway electrons in a current sheet. In the first, I

consider a collection of runaways as having been accelerated from "upstream" in the

current sheet, prior to which they were part of the background plasma in which the

current sheet is embedded. Summing up the contributions from the entire current

sheet then leads to an integral equation for fr_. In the second approach, I derive

a differential equation for f_, from continuity arguments, and solve it. While the

former approach provides a formal solution for f_w, the latter has proven to be much

more fruitful and useful, as we shall see.

The runaway distributions derived here apply only to those electrons having

P > Pcr, that is, we assume the particles are collisionless.

INTEGRA L EQ UA TION A PPROA CtI

The Lorentz force acting on an electron for a time t imparts to it a momentum

p(t) = mT(t)-_ = Po + eEt (2.17)

Ap = p(t) - Po = eEt (2.18)

where Po is the initial momentum along the field/_ = -E:_, m is the electron mass;

and the Lorentz factor is

7(t) = + 1
V\ mc /

= _ + 1 + 2eEt Po + (eEt)2 (2.19)
VkmC/ mc
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Integrating equation (2.17) yields

ft rpo + eEt'] . ,

7(po) (2.20)

where _ is the distance over which an electron is accelerated, and p = p(t). We

have used formulae 2.261 and 2.264.2 of Gradshteyn and Ryzhik (1980). Since no

approximations have been made, neither Ap nor _ need be small.

Equation (2.20) is another statement of energy conservation, as in equation (2.10)
above, and is easily inverted to obtain either the initial momentum in terms of the

final momentum,

po(p,x) _ f l" ,p, eE('_2 11'/2 ]
- _7( )- mc 2) - _ (2.21)

!
or vice versa, equivalent to equation (2.11) above, for a fixed acceleration distance

Consider then a current sheet of length L, subdivided into M + 1 elements bxm =

(0 _< m _< M), embedded in a background plasma (see Figure 2.1). The beginning

of the current sheet is at x = 0. We are interested in obtaining the distribution

function of runaway electrons fr_(x, p), at an arbitrary point xm in the current
sheet.

Figure 2.1: A schematic representation of a current sheet, for the derivation of equation

(2.22).

The particles of a given momentum at xm can originate from either the back-

ground plasma at xm, or from having been accelerated up from xm-1, where they

had a somewhat smaller momentum, p -/ip, at a somewhat earlier time, t -/it,

where the notation should be obvious.

The particles at Xm-1 can themselves have originated either from the background

at xm-1 or from having been accelerated up from xm-2, where they had a yet smaller

momentum, etc.
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We continue to trace the origins of the particles at xm backward through the

current sheet. At each step, we count only those particles arising from the back-

ground, since the electrons already in a given element of the sheet arose from the

background at one or more prior current sheet elements. We thus continue until

either (a) the beginning of the current sheet is reached, at which point there is no

prior acceleration mechanism and all the plasma is background, or (b) the initial

momentum, po, of the electrons being accelerated is decreased to Pcr, below which

this collisionless approach fails. We then treat this point as though it were the

beginning of the current sheet, with background particles having p = per.
The result of all this is that the runaway electrons of a given momentum p, at the

point xm in the current sheet can be written as a sum of background contributions

from "upstream":

h (xm,p) =
fn

hg(x,_ - iSz, p- i@) .

The starting point of the summation depends on whether condition (a) or (b) above

applies. On passing from discrete to continuous variables, we obtain an integral over

acceleration distances:

rn_z h.(z - po)d (2.22)
f_w( Z, p)dx = Jo

where po(p, _)/mc is given in equation (2.21), (x-_) represents a "retarded position"

in the current sheet, fbg is the electron distribution function for the background

plasma in which the current sheet is embedded, and

{ (mcVeE)b(p)-rnax _ X

0

if 7(Per) < 3'(P) < 7(P_) + eE /mc2
if 7(P) > 7(P_) + eEx/mc2

otherwise

(2.23)

Given the background distribution function, we substitute x --* (x - _) and

P _ Po in fbg(x,p) and perform the integration indicated in equation (2.22). The

upper limit of integration, _m_, represents the longest free acceleration distance

available to a particle in its quest to reach the point x with momentum p.

The result (2.22) for the runaway distribution function is quite general, in the

sense that it holds for any background distribution whatever, although of course

some will be more physical than others. The final, complete current sheet distribu-

tion function, fcs, is obtained by adding this collisionless distribution to the bulk

collisional distribution in the current sheet, representing the "thermal current", to be

discussed in §2.2.2. Although general, this solution is not particularly useful. For

one thing, it requires a knowledge of the background distribution function which

may contain nonthermal particles scattered out of the current sheet. In addition

the background may have a temperature gradient along the sheet. Strictly speak-

ing, this solution does not consider any particles pre-existing in the current sheet.

Finally, this formulation does not lend itself to the treatment of losses from the

current sheet.
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DIFFERENTIAL EQUATION APPROACH

In this section, I derive a more useful approximate distribution function for

runaway electrons in a current sheet. The derivation is one-dimensional, but losses

(e.g. due to scattering out of the current sheet) are allowed for. Once again, we

assume that electrons having p > per are collisionless.

The mass flowing out of an element of current sheet, dx, at position x, must

equal the mass flowing in plus any sources, S, and minus any losses,/:, within dx.
Thus:

(p + dp)f(x + dx, p + dp) = pf(x, p) + Sdx - _f(x, p)dx. (2.24)

The runaway distribution function, fr_,, is temporarily written as f for clarity.

Rearranging, performing a Taylor expansion, keeping only 1St-order terms, and using

d/dx - O/Ox + (dp/dx)O/Op, this becomes:

d---_+ \pdx + f= p.

The source term represents the mass flowing into the current sheet from the

background plasma per unit time, at the position x of interest, and is thus related

to fbg discussed in the last section. The difference is that here, the background
contributes only at the point in question. For p >_Per, the background will be very

underpopulated relative to particles of the same p already within the current sheet,

where the electric field has pushed them up from lower momenta into a nonther-

mal tail. The source term thus provides only a minor contribution to the overall

distribution function in the current sheet, at point x, and will be neglected. This

is in contrast to the previous section, where the integrated sum of the background

contributions is decidedly non-negligible. Here, we will assume that this integrated

sum is absorbed in the boundary condition.

The finite length of the acceleration region means that an electron at one end

having p = pc_, will be freely accelerated to the point x, attaining the maximum

cut-off momentum, pco(x), given by equation (2.11). The boundary condition will

be that our solution match, at pco, a numerical solution, from the literature, of the

Fokker-Planck equation for this problem (Fuchs, et al. 1986; 1988). This condition

is chosen because our collisionless assumption is most nearly matched by the fully

collisional numerical solution at the highest attainable momenta (cf. eqn [2.2]). The

numerical solution, given below, will be designated fN_m(P_o).

We are thus led to solve:

df +(ldp L)d'--x k.p_-x -4- P f = 0, (2.26)

i

£

subject to f(Pco) = fN,,m(Pco).

This is a linear, first-order, ordinary differential equation which has an integrat-

ing factor:

I.F. = exp [j/x _ldpo(p_-_Tz_+ _)dx'] , (2.27)
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where Xo is the "retarded position" in the current sheet, from which an electron

having p = Per would be freely accelerated to momentum p as it reaches position x.
The solution is then

f(x,p)=(I.F.)-lc (2.28)

where C is a constant of integration.

To determine C, we recognize that the numerical solution is for an infinite,

homogeneous plasma, and thus does not allow for losses, so we set £ = 0 leading

to I.F. = P/Pcr. Solving for f and imposing the boundary condition at p = Pco, we

find C = (Pco/Pc_)fN,,m(Pco). Our solution is now:

f(x,p) - Pco(X) yNum(Pco)(i.F.)_l. (2.29)
Pcr

We model the particle losses as

f_. --_ (p/Pth)a(Pth/e) (2.30)

where e is the scale length for the losses (mean free path in the current sheet) and

a provides the momentum-dependence of the losses. The case of no losses (/2 = 0)

is obtained by letting _ ---+c¢ (or (_ _ -oo).

Using equation (2.20) and dx = (mc2/eE)d7 we get finally the distribution

function for electrons undergoing runaway acceleration in a current sheet:

PCOfNum(Pco)eXp [ -mc2 Pth I-o, f_, _2 1)(c_-l)/2d.,/,]frw(X,p) p L-TVf( ) L- t'y - J (2.31)

The z-dependence is found in both Pco (eqn [2.11]) and in 7 (and p) (eqn [2.20]).

The normalization for equation (2.31) is given by (Fuchs, et al. 1986; 1988):

fN_m(p_o)__r{l+ 2+2_ }"_ e[(pco/P_h )7-+ aT_L]

T-L(Pc°)-- (Pc°/Pth)2 [ -l + _/l +12TOO/(pc°/pth)2 ]6

(2.32)

(2.33)

(1+ (1+Too= In e(Pco/Pth)2) (2.34)

The runaway rate, F, was given in equation (2.12).

The solution, equation (2.31) is valid in the regime in which electrons are freely

accelerated, i.e. for Pc_ < P < Pco. For p <Pcr we must set f_ = 0, since collisions

prevent runaway acceleration from occurring. Particles having p > Pco are assumed

to follow a Maxwellian distribution, but not necessarily having the same temperature

as the plasma from which they were drawn. Equation (2.33) is a measure of the

spread in the distribution function, perpendicular to the acceleration direction, in

units of the original temperature. At the end of the acceleration region, for p > Pco,
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we expect the parallel distribution to also be characterized by the temperature

T±(pco). Thus, above Pco, the expression for f becomes

[ --mc 2 ]Lo = × exp [kT±(pco)(7 -  'co) ,
(2.35)

to give the high energy Maxwell±an.

The integral in equation (2.31) can be performed analytically only for a =

0, +1, +2, .... The seven solutions for -3 _< a < +3 are presented below, as

well as the no losses limit. Several of these are used in the accompanying figures.

Figure 2.2 displays the electron distributions used for fitting two observed hard

X-ray spectra in the next chapter (Figs. 3.8 and 3.9). In both cases, the dashed

line represents a Maxwell±an electron distribution at the temperature of the current

sheets, while the dotted line is the distribution function of runaway electrons of

interest here. In the absence of detailed knowledge of the scattering processes (to

fix cr and g), we have used the no losses solution of equation (2.36) below. The

runaway regime is between £cT and £co, the values of which are shown in the figures.

This is the nearly flat (,,_ p-l) region at the 'top' of the distribution. At energies

less than CoTthere are no runaways, and at energies greater than Eco there is another

Maxwell±an, having temperature T±(pco) given by equation (2.33). For Figure 2.2(a),

T± = 3.1 x l0 s K, while for Figure 2.2(b), T± = 3.5 × l0 s K. The relation between

the thermal and nonthermal components of these distribution functions is discussed

in the next chapter.

Figures 2.3 and 2.4 show how the second of these runaway distributions changes

with both a and g when particle losses from the current sheets are allowed (cf. eqn

[2.30]). The overall effect of particle losses is of course to reduce the population of

runaways. In each figure, the dotted line is the no losses solution from Figure 2.2(b).

In Figure 2.3, the scale length for losses is held constant at e = l0 s cm and a = -3,

-2, -1, and 0 is displayed. It is apparent that for a > 0 there would be very few

runaways at all, since this means that the high energy particles are preferentially

lost from the acceleration region. In Figure 2.4, we fix a = -3 and vary g, keeping

it shorter than the length of the current sheet itself (L = 3.0 x 10 9 cm).

SOL UTIONS TO EQ UA TION (2.31)

£ = 0 (no losses): This solution approximates the high energy runaway tail of
the numerical solution.

Y(£,=O)=(Peo/P)fNum(Pco) (2.36)

a = -3: This is the momentum dependence of Coulomb collisions and, per-

haps, of some anomalous resistivity processes such as ion acoustic turbulence. For

Coulomb collisions, the scale length evaluated for p = Pc_ is gco_,t = v_/ueout =

V4r/(V3hl/th) : (Pcr/Tcr)4(_/th/Pth)3(mt2th) -1 .
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Figure 2.2(a): The electron distribution function which generates the hard X-ray spectrum

of Figure 3.8. The dashed line is a Maxwellian and the dotted line is the runaway electron

distribution, equation (2.36). The input parameters are T = 9.0 × 10?K; N = 3.44 ×

101° cm-3; e = 0.120; L = 3.0 × 109 cm.
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Figure 2.2(b): The electron distribution function which generates the hard X-ray spectrum

of Figure 3.9. The plotting convention is as above. The input parameters are T = 3.6× 10?K;

N = 7.0 x 10 x° cm-3; C ---- 0.048; L -- 3.0 x 10° cm.
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f(a : -3) - Pc°fN_m(p_o)[(7- 1)(%r + 1)] (m_214eEO(mhlm&_P -(3' + 1)(%,- 1) x

exp \ 2eEt" mc [ (Hmc)2 (pc,/mc)_]]
(2.37)

:(. _2>,.o.., rm.,(.,.]'(,= = --JNum_,PcoJeXpp [eEl \rnc/ pFmc
_7c.__,]] (2.38)

p¢,/mc/j

a = -1:

[(7-W_rl)(Tc_l)(7cr+- 1)]-(mce/2eE_)(p'h/mc)21)jf(a = -1)= PCOpfN_m(Pco) 7_.'-2
(2.39)

a = 0: This corresponds to particles of all energies being lost equally, e.g. during

a global disruption of the current sheet.

[_7_7_,++(p/me)(Pc,/mc)J]-(mOl_EO(v'h/mc) (2.40)f(a = O) = fNum(Pco) _.

= +1: Any a > 0 corresponds to higher energy particles being preferentially

lost with respect to lower energy particles.

LF-rod ]f(a = -t-1) = PC°fNum(Pco) exp ]-'_-_(7 - 7cr) (2.41)
P

a = +2:

f(a = +2) 7 + (p/mc) (pc,/mc)] -O_12"EOcm_lp'h)V_ofN_m(p_o) _c,+

]X exp L2_Et (wP/P'_- %'P"/P'_) (2.42)

a = +3:

(-mc 2 Pth -2f(a = +3)= fNum(Pco)eXp _('_cc ) 3 - 7 + %, (2.43)
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2.2.2 COMPLETE ELECTRON DISTRIBUTION FUNCTION IN

A CURRENT SHEET

As discussed in the introduction to this section, the collisional part of the current
sheet distribution function is not easily obtained analytically. To zeroth-order, the

Spitzer-H£rm solution (Spitzer and H_rm 1953) or its relativistic counterpart, the

Hakim-deGroot distribution (Hakim 1967; deGroot et aL 1980) can be used. This

is given by:

I mc2 ( p PdrfzdG(x,p)=exp Af--7dr"_ 7(P) mcmc eEX))mc2 . (2.44)

Here, Af is a normalization constant, Pdr is the "drift momentum" of the thermal

current due to the electric field, and 7d_ = 7(Pd_). No pitch angle effects are included

here in our one-dimensional analysis of the parallel distribution. In general, Af must

be determined numerically.

In this approximation, the entire current sheet distribution function is given by

Y. = fHac + ,

where f_w is obtained from either equation (2.22) or (2.31). It is known, however,

that equation (2.44) can severely underestimate the number of particles with p > Pth,

and thus the important regime of Pth < P < Per is treated quite poorly in this

approximation. This regime has no satisfactory analytic treatment and yet is crucial

to the runaway process. Even the sophisticated treatment of Kruskal and Bernstein

(1962; Cohen 1976), in which this region of momentum space is further subdivided
into three smaller regimes, generates only partial solutions in each of the three new

momentum intervals, and is unable to connect them to each other. Thus it appears

that at present, we cannot come up with a simple but satisfactory expression for

fcs.

One possible way out of this state of affairs, is to somehow parameterize the

existing numerical solutions in this region of momentum space. The disadvantage of

this approach is that it is largely descriptive, i.e. it is difficult to physically interpret

the parameters in the resulting expression. We have nevertheless made such a

parameterization, and found it to reproduce the numerically derived distribution

function of Fuchs et al. (1988) for both e = 0.04 and e = 0.1 to within a factor of
1.5.

We achieve this parameterization as follows. We add fHdG to the expressions

given above for frw, but extend fr,, to lower than "allowable" momenta, down to

Pth. We also multiply f_w by an "enhancement factor", M, which is unity for low

and high momenta and has a maximum at p = (2/3)pc_. We use for this factor a

low-order member of a _-function sequence. Finally, to avoid a discontinuity in f at

Pth, we "ramp up" this enhanced fr_ with another factor, R, which varies smoothly

from zero at Pth to unity at Pc_. The complete distribution function of electrons in

a current sheet is then given, in four distinct regions of momentum space, by

f fHao + RML_, for p < p_o
f, (2.45)

fHdO + M f_o for p > P_o '
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where

0R = sin r/2 if Pth <_P <--Pc,- , (2.46)

1 if p > PeT

M = 1 + (Pcr/Pth)[(Pcr/Pth)- 2] (2.47)

r {1 + [(P/Pth)-- 2/3(pcr/Pth)] 2} '

and fHdC, fr_, and fco are given by equations (2.44), (2.31), and (2.35) respectively.

2.3 ELECTRON DISTRIBUTION OUTSIDE THE

CURRENT SHEET

It is easier to obtain a believable thermal/nonthermal distribution function

for the electrons in the surrounding plasma, within which the current sheets are

embedded, than for the current sheets themselves. This is because, lacking an

acceleration mechanism in this region, the plasma is truly thermal, albeit with

some admixture of nonthermal particles arising from scattering processes within the

current sheets. In addition, the temperature of the thermal plasma is constrained to

be no hotter than the temperature in the current sheets, which provide the heating

mechanism through Joule dissipation. Thus, outside of the current sheets we can

write f = fth + f,_t, where the two terms on the right represent the thermal and the

nonthermal particles respectively.

There are two ways to treat the nonthermal particles in this ambient plasma,

physically or descriptively. If one believes that the scattering mechanism within the

current sheets is known, then the runaway electrons in the sheets can be described by

equation (2.31) with the appropriate choices for a and e, the momentum dependence

and scale length of the losses (cf. eqn [2.30]). We then compare, at each point along

the sheet, this depleted runaway distribution with that for which there are no losses

at all (see Figs 2.3 and 2.4), the difference being the particles lost from the sheet,

into the surrounding plasma, at each point. In other words:

fat(P) = [f(p, x ;£ = 0) - f(p, x ;£ _ 0)] dx. (2.48)

In this framework, the nonthermal electrons in the ambient plasma are closely

coupled to the microphysics within the current sheets. Unfortunately, the various

instabilities and wave turbulence spectra needed to characterize the particle scatter-

ing are not well understood at this time. Nevertheless, this procedure could be used

in reverse to learn something about these microphysical processes. For instance,

with simultaneous observations in hard X-rays and microwaves (see §3.2 and §4.3)

we could in principle determine the values of a and g which can fit both data sets,

thereby characterizing the current sheet losses. Such simultaneous high-resolution

spectra have not been obtained to date.

We therefore turn to a descriptive parameterization of f,,t, choosing the well-

known power-law form

fat(7) = (4rr)-'(/_ - 1)(Tcr - 1)6-'(7 - 1) -6 (2.49)
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Figure 2.5: £cr vs _ for 10e K < T < l09 K. The alternating solid and dotted lines are for

clarity only, and are labelled in units of 107 K. The long dashed lines show the suggested
upper limits on e for 6 = 2, 4, and 7 as discussed in the text.

having spectral index 6 and low energy cutoff £cr = (Tcr - 1)mc 2, with 7 the Lorentz

factor. The conversions between £cr and e - E/ED is shown in Figure 2.5, together

with suggested maximum e's, as discussed below. We restrict the spectral index to

be no harder than that in the current sheets themselves. This means that _ > 1/2,

since the flattest distribution within the current sheets is o¢ p-1 _x £ -1/2 for the

no losses case, equation (2.36). It is seen that this is not a severe restriction. We

have chosen £cr for the low-energy cutoff for the simple reason that the nonthermal

runaway electrons are overwhelmingly produced in the current sheets at this energy.

Particles in the sheets having $ < $c_ will have predominantly a heating effect on
the surrounding plasma.

For the thermal particles, we choose the first-order expansion of the Jfittner

distribution, which is valid for temperatures up to -,_ 2 x 10 9 K. It is given by

,5/,h(7) = _,kT] S mc 21

[" _me 2 )x exp (-I- 1) (2.5o)

Table 2.1 gives the energy, kT, associated with selected temperatures. Both

equations (2.49) and (2.50) are in the form used by Dulk and Marsh (1982) and are

separately normalized to unity. To join the two distributions smoothly, we let %_

set the height of the nonthermal tail, by assuming equal contributions from thermal

and nonthermal particles at £c_, i.e.

= (2.51)

r
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I ForT=| 107 3x 107 5.8×107 10s 3x10 s Kelvins II1 IIkT = 0.862 2.59 5.00 8.62 25.9 keV

Table 2.1: Temperature/Energy Conversions

This immediately leads to an expression for the relative densities of nonthermal and

thermal particles:

N,,,Ig h (mc2_312(1 + 15 kT _-I ")'_,-(%,--_)(7,,-1)1/2__(32_r)1/2\ kT ) 8 mc 2)

× exp t_(Tcr - 1) . (2.52)

The method of joining the two distributions, equation (2.51), is not unique. For

example, one can imagine separately deriving Ec_ and the height of the nonthermal

tail for various acceleration mechanisms. They could then be related in some fashion

other than equation (2.51), or be independent of each other. It is the assumption

of DC current sheet acceleration which motivates the use of equation (2.51).

The complete, normalized thermal/nonthermal distribution function in the plasma

surrounding the current sheets will then be given by

ftnt(7) = (1- -?--)fth(7)+ R--?fn,(7) (2.53)

using equations (2.49), (2.50), and (2.52), where N = Nth + N,u is the total electron

density in the plasma, and R is again a "ramp-up" factor to avoid a discontinuity

in f at PeT, given by

0R = sin[ ( 7 _ 7R):/(7c _ 7R) ]
1

if 7 < 7n = 7(Pn) with

PR -- Pcr -- Pth/2

if 7n < 7 < 7c_

if 7 > 7c_

(2.54)

The factor R is included for completeness. Its removal has no apparent effect on the

resultant spectra.

Figure 2.6 shows the distribution function, equation (2.53), used to generate

the gyrosynchrotron microwave spectrum of Figure 4.12. The input parameters are

T = 7.6x 107K, Nth = 6.0X 109cm -3,_f = 4.5, and e = 0.077. Notice that the

discontinuity which would occur at £cr = 48 keV is largely smoothed out through

the use of the ramp-up factor equation (2.54). The remaining small "hump" near

£c_ has no effect on the spectrum of Figure 4.12, nor do analogous humps affect any

of the other spectra in Chapter 4.

It is appropriate here to point out that for sufficiently low %_, this particular

thermal/nonthermal distribution function becomes unphysical, due to the choice of

a power-law description for fat. As %r decreases, an ever increasing fraction of

the nonthermal particles are found at lower energies. For instance at %T = 7th,



26 CHAPTER2.

too

10

0.1 I-

f

0.01

1
E-3

1
E-4

t
g-5

1

E-810

CURRENT SHEETS, RUNAWAYS, & DISTRIBUTIONS

981 July 24

(1828:00)

I m ,, m i Ill| _ I ]

100

Electron Energ, y (keY)

! i | | I

!

tOO,

Figure 2.6: The distribution function, eqn (2.53), used to generate Figure 4.13. The input

parameters are: T = 7.6 x l0 TK, N¢h = 6.0 x 109 cm -3, _ = 4.5, and e = 0.077.

most of the "nonthermaI" particles have nearly thermal energies, and the concept
of nonthermal particles loses its meaning.

The restriction that e << 1 serves to avoid this problem. We impose the (some-

what arbitrary) condition that Nut < 0.25 Nth. Equation (2.52) then provides a

maximum E, for a given temperature and spectral index, to ensure that the above

(arbitrary) condition is met. This emax is plotted as dashed lines on Figure 2.5 for

= 2, 4, and 7. These are intended as cautionary guidelines only, and are not rig-

orous upper bounds on e. It is seen that keeping e_< 0.1 will keep our distribution

function physical for T _< 3 x l0 s K, except for very hard spectral indices.

I also point out that as 7cT _ oo (e _ 0) equations (2.52) and (2.51) both tell

us that the nonthermal contribution to f vanishes. Generally, for e = 0.01 or less,
only the thermal population is significant.

2.4 FINITE-PLASMA EFFECTS

The thermal/nontherma] distribution function obtained in the previous section for

the plasma outside of the current sheets (eqn [2.53]) is a useful result. Recent work

by MacNeice et al. (1991), however, is casting some doubt on the usefulness of the

distribution functions obtained so far within the current sheets, both earlier in this

chapter and generally all previous work on the subject. The cause of the concern

is that all previous work has assumed an infinite, homogeneous plasma, whereas

in the real world (e.g. on the sun) either or both of the plasma, or the electric

field, is finite in extent. MacNeice et al. show that the restriction to a finite-sized

acceleration region modifies the distribution function from what has been expected.

Without going into the details of his calculations, which is a numerical Fokker-

E
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Figure 2.7: A numerically derived distribution function for a finite current sheet (MacNeice

et al. 1991) and its comparison to eqn (2.36) as discussed in the text.

Planck solution, there are two relevant results for our purposes. First, although he

.finds that f 0¢ p-1 in agreement with our/2 = 0 solution of equation (2.31), the
agreement is for very high values of p, greater than the expected pco's for solar flare-

sized current sheets. Put another way, the asymptotic limit for which our solution

is valid is pco >_>pc_, a regime often outside the range of applicability to solar flares.

For Pco and pc_ closer together, the slope of the plateau in the electron distribution

function is considerably softer than -1, and is an undetermined function of sheet

length and electric field strength.

Secondly, MacNeice et al. find that the temperature which characterizes the

high energy Maxwellian (above E_o) is significantly lower than that predicted from

equation (2.33). This is because Tj.(p) apparently does not increase indefinitely as in

equation (2.33), but rather peaks at some velocity higher than vcr, and subsequently

decreases. When MacNeice solves the problem for the infinite homogeneous case,

he finds qualitative agreement with equation (2.33).

Both of these effects can be seen in Figure 2.7 which plots In f against his

parameter _ -- v/vth, for a number of current sheet lengths. This is the sequence

of plots terminating between _ = 5 and 10. The dotted line is his extrapolated

solution for a homogeneous, infinite current sheet, and the solid line which meets

it at high _ is just v -1, normalized to his extrapolated solution. His parameters

are T = 106 K, N = 109 cm -3, e = .02, and his longest L = 4.4 x 109 cm, although

his conventions, particularly for Vth and ED, differ from ours. Nevertheless, it is

clear from the figure that the asymptotic agreement between his solution and that

of equation (2.36) would occur at energies in excess of C_o.
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The results that I've just discussed are preliminary, and cannot yet be quanti-

tatively generalized to apply to the sun. As such, in modeling hard X-rays, I will

use my results from earlier in this chapter. The eventual inclusion of effects from

the more accurate numerical solutions will affect, to some extent, the quantitative

results of the next chapter. I nevertheless fully expect the qualitative conclusion

to persist, namely that current sheets provide a viable physical framework within
which to model solar flares.

Z

I



Chapter 3

THERMAL/NONTHERMAL
HARD X-RAYS

3.1 HARD X-RAY BREMSSTRAHLUNG

3.1.1 INTRODUCTION

When a charged particle in a plasma is accelerated in the Coulomb field of an-

other charged particle, it emits radiation called free-free emission or bremsstrahlung.

The latter term is from the German for "braking radiation". The former refers to

free electrons as the accelerated particles, being free both before and after they emit

their radiation. In contrast free-bound radiation occurs if the initially free electron

is captured by the accelerating ion. Bound-bound radiation consists of the spectral

fines formed by atomic transitions of bound electrons.

For photon energies less than ,,_ 9.5 keV, spectral lines from bound-bound tran-

sitions are of great importance in solar flare spectra. Free-bound recombination ra-

diation may be important for the quiet corona, but for T > 10 r K free-free emission

dominates (Culhane 1969). Above _- 400keV, nuclear processes begin to produce

lines which contribute to the spectra. Photons having energies in the range be-

tween 10 and ,-_ 400 keV are known as hard X-rays, and are generally agreed to be

continuum radiation arising from electron-ion bremsstrahlung.

In general, any charged particle can be accelerated (scattered) by any other

charged particle in a plasma. However, for particles having the same charge to

mass ratio, the dipole moment _ eiri = (e/m)_ miri is a constant of the motion.

This means that electron-electron or proton-proton interactions will not produce

radiation in the dipole approximation, since the radiation is determined by the

second time derivative of the dipole moment. We are thus led to consider electron-

proton (electron-ion) collisions, with the electron emitting the radiation since its

much smaller mass means it will undergo much greater acceleration.

The relation of the radiating electrons to their environment is also important.

If the radiating electron population is not significantly affected by collisions, we say

that the bremsstrahlung is produced in a thin-target. Conversely, if an electron pop-

ulation is injected into a region where collisions will significantly alter its distribution

function, and emits the radiation in this region, we say that the bremsstrahlung is

produced in a thick-target. Such a target is generally both cooler and denser than

29
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the particles injected into it. Hard X-ray bremsstrahlung produced by a thermal

population of electrons is, by definition, thin-target bremsstrahlung. Nonthermal

thin-target bremsstrahlung is probably not seen from solar flares (see §3.2 below),

except possibly with imaging instruments. Thin-target and thick-target emission

refer to the effect of the environment on the radiating electrons. This should not be

confused with optically-thin or optically-thick radiation, which refers to the effect

of the environment on the photons. All of the hard X-rays that we observe from

solar flares are optically thin, which simply means that the emitted photons are

unmodified on their way out of the solar atmosphere.

I will now briefly review the radiation formulae for both thermal bremsstrahlung

and nonthermal thick-target bremsstrahlung, the latter for a general electron dis-

tribution function. I will then discuss the role of current sheets in producing this

radiation (§3.2), calculate theoretical spectra (§3.3), fit and discuss some high reso-

lution solar flare hard X-ray data (§3.4), and show how these ideas can be used to

model hard X-ray images of two-rlbbon flares (§3.5).

3.1.2 THERMAL BREMSSTRAHLUNG

The bremsstrahlung emissivity from a Maxwellian plasma is (Tucker 1975):

j(v)
= _3--_] i \ Vth ] g$]e-hv/kT

= 6.8 × 10-3SN_-_(NiZ_)T-1/2_lle-h_'/kT erg cm -3 s -1 Uz -1 (3.1)
i

where ro is the classical electron radius, _th = _/(2kT/Trm_), and 011 is the temper-

ature averaged Gaunt factor.

Multiplying this expression by the volume, V, of the emitting region, dividing

by 4rR2_ with R = 1 AU = 1.5 × 10a3 cm and _ the photon energy, and converting

ergs, Hz, and Kelvins to keV, we obtain the differential thermal bremmstrahlung

X-ray flux (Crannell et al. 1978):

,,,3_LEMiZ2= _-v/kT photons cm -2 s -1 keV -1.
I(E) = 1.07 × iv E_/kT yy!e

(3.2)

The emission measure, EMi = N_NiVx 10 -45, with Ni the density of ions having

charge number Zi, and Ne the electron density. Using coronal elemental abundances

(Meyer 1985), the average charge state of the fully ionized flare plasma is Zi = 1.2.

Combined with charge neutrality (N_ = _i NiZi), we obtain _,i EMiZ'_ = 1.2EM,

with EM = N_V. The Gaunt factor is approximately (Tucker 1975) gI! = (T/c) °4"

Making these substitutions, equation (3.2) becomes

I(¢) = 1.3 x 106EM e
el.4(kT)0.1 exp(- _-_) (3.3)

This expression is used below to calculate thermal hard X-ray bremsstrahlung.
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3.1.3 THICK-TARGET BREMSSTRAHLUNG

An electron of kinetic energy C can generate bremsstrahlung photons of all en-

ergies E < E. The differential thick-target bremsstrahlung hard X-ray flux is given

by (Brown 1971):

\1-_] 1373rc2e41nA EPth a£mi, f(vc;t_'g) ,_i, aBtt(e' £')d'_l d£

= 1.345 × 10-24 NrA fe,,,,
epth ln A .,_,,,,,, f(£;(_'£)

X 2_ In e'+_mc_) dg'dg (3.4)

- v/(1-

In these expressions, f(_c; a,_) is the electron energy distribution function for

the electrons which reach the thick-target. These can be either the entire current

sheet population, or the runaways alone. Particle losses from the current sheet are

parameterized by (_ and g (eqn [2.30]). The direction-integrated Bethe-tteitler cross

section for bremsstrahlung (Koch and Motz 1959, their eqn [3BNa]) is aBH(e, E) for

photon energy E and electron energy C, and is valid in the form used here for E up to

,.. 400 keV. The density Nr refers to the radiating electrons, not to the target, and

A is the effective surface area of the emission. The coronal charge number is again

Z/ = 1.2. The integration is over electron energy. The lower limit of integration

is the greater of either E or Ec_ if only runaway electrons are impinging on the

chromosphere (the thick-target). If the entire current sheet distribution (runaways

+ thermal current) is used, the lower limit is always e, the photon energy.

Equation (3.4) is used below to generate thick-target hard X-ray spectra. The

spectra tend to flatten for photon energies e < Erni,_.

Also of interest in thick-target modeling are the rates at which nonthermal elec-

trons, and the energy they carry, are injected into the target. Both rates are cal-

culated for energies above some low-energy cutoff, Co, which is E'er for the present

runaway electron model. These rates are given respectively by

Ff(£o) = f(£)dg electrons see -1 , and (3.5)
o

1.6 X lO-9_-(g'o) = tqf(_')dC ergs see -a. (3.6)
o

3.2 CURRENT SHEETS AND HARD X-RAYS

The assumption that current sheets exist in a solar flare plasma provides a nat-

ural mechanism for generating the hard X-rays that are observed. The currents

successfully heat the plasma surrounding them via Joule dissipation, and accelerate

particles nonthermally via the runaway process. The heated plasma will then pro-

duce thermal bremsstrahlung while the nonthermal particles produce thick-target

bremsstrahlung when they impinge on the chromosphere.

The nonthermal particles will also produce thin-target bremsstrahlung higher in

the corona. The low flux of these particles relative to the thermal population in
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this region (eqn [2.12]), means that the thin-target radiation will be unobservable in

this model, except at high enough photon energies such that the thermal emission is

negligible. However, at these high energies, the thick-target emission will dominate,

being two powers of energy harder than the thin-target emission while produced

by essentially the same population of electrons (Brown 1971; Tandberg-Hanssen

and Emslie 1988). In addition, it has been shown by Gary (1985) that thin-target

emission cannot be easily reconciled with microwave observations: We thus neglect

nonthermal thin-target emission in this model.

There are at least two distinct scenarios, incorporating current sheets, for pro-

ducing the hard X-rays. In one (Fig 1.3), a large single current sheet is located along

the top of an arcade of magnetic loops in the corona. This could be produced, for

example, through a coronal magnetic reconnection process. The runaway electrons

cannot be accelerated along the entire length of the current sheet, since then the

runaway current would generate an induced magnetic field far in excess of that ob-

served (see discussion leading to eqn [2.13]). The runaways thus must be scattered

out of the current sheet on a length scale much less than the length of the sheet

itself, whereupon they will subsequently stream down the legs of the magnetic ar-

cade and generate thick-target emission as they enter the denser regions of the solar

atmosphere. The thermal current atop the arcade serves to heat the surrounding

coronal plasma, from which we then observe thermal hard X-ray bremsstrahlung.

When the emission measure of this thermal radiation becomes large enough, it is

observed as the superhot component of flare hard X-ray spectra (Lin, et al. 1981).

This scenario has been used to model high resolution hard X-ray spectra from a

solar flare (§3.4 below). Since the thermal and nonthermal hard X-rays come from

spatially distinct regions of the solar atmosphere in this scenario, it is possible to

produce simple model images of two-ribbon flares (§3.5).

It was shown by ttolman (1985; Holman et al. 1989) that anomalous resistivity

is required in this scenario, if the hard X-ray emission is either purely thermal

or purely nonthermal. This requirement may or may not still hold in this hybrid

approach. Self-consistent modeling of simultaneous observations in hard X-rays,

soft X-rays, and microwaves is needed to resolve the issue. Since the resistivity 77=

1/a = mv/Ne 2, anomalous resistivity may be incorporated by rescaling equation

(2.1), if the wave turbulence scattering still has a v-3-dependence. This is the case

for ion acoustic turbulence. In the remainder of this chapter, classical resistivity is
assumed.

The second possibility is that many (> 104) oppositely-directed current sheets

exist within the flare plasma (Holman 1985). In this case we can imagine that the

currents are coaligned with, and residing in, one or more magnetic loops, and thus

terminate in the chromosphere. They must be oppositely directed so as to limit

the net current, and hence the induced magnetic field. A loop may be envisioned

as a cross-sectional portion of the arcade in Figure 1.3. Now the thermal current,

as well as the runaways, will generate thick-target bremsstrahlung, while thermal

bremsstrahlung is produced throughout the loop volume. In this picture, the entire

current sheet distribution function is used for the thick-target calculation, and thus

the superhot component of hard X-ray spectra can be produced by either or both

of thermal and thick-target bremsstrahlung. As discussed at length in the last

chapter, however, there is no entirely satisfactory expression that can be used for
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fc_. In addition, the current-filamentation process is not well understood. We will

thus concentrate for the remainder of this chapter on the first picture, in which

only the runaway electrons enter the thick-target, recognizing, however, that other

possibilities exist.

It is important to bear in mind that the plasma parameters, such as tempera-

ture and density, can in general be very different in current sheets compared to the

surrounding plasma. Current sheets are certainly hotter and probabZy more dense

(Syrovatskii 1981). This has two important consequences for the the thermal emis-

sion. First, we expect to see thermal emission from the hottest regions of the flare,

which means from that plasma directly heated by the current sheets to nearly the

temperature of the sheets themselves. The sheets however are very thin structures

(eqn [2.13]) and so their total volume can be quite small. Thus, although thermal

bremsstrahrung is present, it will not necessarily be observed as a distinct thermal

component until enough of the surrounding plasma is heated and thus increases the

emission measure (volume) of the thermal bremsstrahlung emitting plasma. The

rate at which this occurs depends in turn on the heat transport properties of the

plasma. The fact that the density is likely to be different in the two regions means

that the current sheet density cannot be used to determine the thermal emission

measure, and vice versa. Current sheet density and thermal emission measure are

thus independent quantities in this model.

3.3 THEORETICAL HARD X-RAY SPECTRA

3.3.1 INTRODUCTION

In this section I present theoretical spectra incorporating both nonthermal thick-

target bremsstrahlung (eqn. [3.4]) and thermal bremsstrahlung (eqn. [3.3]). For the

former process, in the absence of detailed knowledge of turbulence and instabilities

in the current sheets, I will use the runaway electron distribution function with no

current sheet losses (eqn. [2.36]). An examination of the various frw with losses

in the last chapter shows that, in general, including losses will soften the runaway

distribution function, and thus soften the nonthermal portion of the hard X-ray

spectra as well.

With no losses, then, we have at our disposal six parameters to calculate a hard

X-ray spectrum: Temperature T, and Emission Measure EM, which characterize the

thermal bremsstrahlung; Electric field strength e, Density N, and Length L, which

characterize the current sheets; and Area A, which characterizes the thick-target

source. Of these, EM and A are premultipliers, of the thermal and nonthermal

components of the spectrum respectively. As such, these parameters serve only

to raise or lower their respective parts of the spectrum in toto, not altering their

respective shapes. The shape of the overall spectrum can nevertheless change, if the

premultipliers are not altered in unison, as in Figures 3.3 and 3.7 below.

Although the length of the current sheet enters only in a product with the current

sheet density, NL (eqn [2.11]), while the area enters only in a similar product,

NA, we cannot eliminate one parameter. This is because we require both the

absolute electric field strength (to determine Pco, which also requires L), and the

ratio e --- E/ED (to determine Per). Thus if we eliminate N as an input parameter
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Figure 3.1: The basic hard X-ray spectrum which is varied in Figures 3.2 - 3.7. The input

parameters are: T = 3× 107K; EM= 104s cm-3; N = 1011cm-3; e = 0.050; L = 3x 109 cm;

A = 1015cm 2. The dashed (dotted) line is thermal (thick-target) bremsstrahlung.

in favor of the above two products, we then need to specify either E, or ED, in

addition to e.

The temperature is the only parameter to play a role in both parts of the spec-

trum, since it helps to determine the Dreicer field (eqn [2.3]) for which e is a scaling

factor, as well as being the temperature to which the ambient plasma is being heated.

It is this coupling of the thermal and nontherma] emissions, through the common

temperature, which helps constrain the full set of parameters.

It is appropriate here to mention the conventional modeling of high resolution

hard X-ray spectra (Linet al. 1981; Lin and Schwartz 1987). These authors also use

a thermal/nonthermal approach, in which the nonthermal radiation is characterized

as a double power-law. They then also employ six parameters: Temperature, Emis-

sion Measure, two break energies, and two power-law indices. They have demon-

strated that six parameters are justified, by applying the F-test to the X2-statistic

(Bevington 1969). The advantage of the current approach is that the parameters are

all easily interpreted physical quantities, thus enabling us to gain real insight into

the physics underlying the solar flare phenomenon. In addition, because the param-

eters are physically coupled, only five of the six parameters are actually required to

fit the data (see §3.4 below).

In the sections which follow, I will show and discuss how a basic theoretical

spectrum changes with each of the six parameters. The basic spectrum is shown

in Figure 3.1 with the thermal and nonthermal thick-target contributions shown

as dashed and dotted lines respectively. This spectrum is also shown as a dot-

dashed line on Figures 3.2 through 3.7, and has the following input parameters:

T : 3 x 107K; EM= 104Scm-3; N = 1011cm-3; e = 0.050; L = 3 × 109cm;

m

m

E
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A = 1015 cm 2. The values of these parameters were chosen so that the resulting

spectrum clearly shows both the superhot thermal and the nonthermal components.

In §3.4 below, I will show that comparable values for the parameters can be deduced

for observed spectra. For each parameter that is varied, we fix the other five. In

addition, for T, N, e, and L we allow both EM and A to adjust so as to fix two

points in the spectrum, one in each of the thermal and nonthermal regimes. The two

points, taken from the basic spectrum of Figure 3.1, are I(13keV) = 215 photons

cm -2 sec -1 keV -1 and I(150 keV) = 5.9 × 10 -4 photons cm -2 sec -1 keV -1. This

can help give a "feel" for how these four parameters can be used to fit an observed

spectrum.

3.3.2 VARIATIONS WITH HARD X-RAY PARAMETERS

TEMPERATURE

In Figure 3.2(a) it is seen that increasing the temperature of the current sheets

(and hence of the surrounding plasma) has a dramatic effect on the hard X-ray

spectrum. The superhot thermal component becomes increasingly dominant over

an ever increasing range of photon energies, beginning at the lower energies. In

addition, the nonthermal emission is reduced as T increases, further enhancing the
thermal aspect of the resultant spectrum. The reduction in nonthermal emission has

two causes, which are related. First, as T goes up so does £cr which means that only

the highest energy electrons undergo runaway acceleration. Secondly, the absolute

value of the Dreicer field decreases because of its T-l-dependence (eqn [2.3]), so

that, since e is fixed, the electrons are less efficiently accelerated. Recall that we are

assuming classical resistivity throughout this chapter. The opposite effects ensue

when the temperature is decreased, until for T = 107 K (the dotted line in Figure

3.2(a)), the thermal emission is unobservable, while the nonthermal emission is an

order of magnitude greater than in the basic spectrum.

In Figure 3.2(b), we constrain the emission at 13 keV to be thermal with a

fixed flux of 215 photons cm -2 sec -1 keV -1, and the emission at 150 keV to be

thick-target with a flux of 5.9 × 10 -4 photons cm -2 sec -1 keV -1. To achieve this, we

allow the thermal emission measure and the thick-target area to vary freely, until

both conditions are met. This is a very useful technique for fitting spectra with

well-observed thermal components at low energies. The shape of this component

is determined exclusively by the value of T, as shown in Figure 3.2(b). Thus the

temperature and emission measure can be determined with high precision.

The dotted line in Figure 3.2(b) corresponds to that in Figure 3.2(a), with the

emission measure of the former multiplied by ,,_ 2 × 104 while A is decreased by

a factor of ,-_ .3 to meet the constraints. The spectrum for T - 2 × 10sK has a

dominant thermal component at the "nonthermal" constraint point, rendering this

constraint meaningless. In fact, at this high a temperature, we are within the old

"thermal model" regime, in which nonthermal emission is largely unobservable.
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Figure 3.2(a): The temperature variation of the basic spectrum of Figure 3.1 (dot-dashed
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EMISSION MEASURE

Varying the emission measure of the thermal bremsstrahlung merely raises or

lowers the thermal portion of the spectrum in toto, leaving the nonthermal tail

unaffected, as seen in Figure 3.3. For a spectrum with a well-observed thermal

component, this parameter can be determined very precisely, as discussed above.

l

E+8 L .... ' ' I

[
10000 EM

I

_ "\'N

_ O.Ol| f

I I I

E-410 IC_

Photon Energy (keV)

Figure 3.3: The variation of the basic spectrum with emission measure. From bottom to

top, EM = 1046, 104T, 104s (basic), 1049, and 10S°cm -3. Only the thermal component is

affected.

ELECTRIC FIELD RATIO

Increasing the electric field strength through e -- E/ED increases the nonthermal

character of the hard X-ray spectrum as expected, while leaving the thermal emission

unchanged (Figure 3.4(a)). Recall from Chapter 2 that we are restricted to e <_ 1,

but • = 0.15 is probably not excessive here, where only the runaway electrons are
considered. If the "thermal" electrons within the current sheets were important

for thick-target emission, the expression for their distribution function could not

be trusted for • = 0.15, since vdr _. Vth. As it is, the thermal bremsstrahlung is

very apparent in Figure 3.4(a) for low •, significantly modified for • = 0.07, and

overwhelmed by nonthermal emission for • > 0.10.

The energy gained by a runaway electron in a current sheet increases with •

(eqn [2.10]) for fixed acceleration distance and Dreicer field. However, although

£cr decreases monotonically with increasing •, gco does not monotonically increase.

This is due to the nonlinear dependence on • of equation (2.11). For instance, in

Figure 3.4(a) we have for • = 0.02, gco = 92keV (with A£ = 12keV) while for

• = 0.05, £co = 57 keV (although Ag = 29 keV). All of this means that the slope
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of the thick-target spectrum does not necessarily change systematically with e. In

fact, however, when we constrain the spectra in order to fit observations (Figure

3.4(b)), we find that the spectrum changes only slightly for all but the lowest e.
To account for these, recall from §3.1.3 that for e < £cr, the hard X-ray spectrum

flattens out. Thus at the lowest e (highest £c_), the constrained spectra of Figure

3.4(b) are flatter than, and hence lie below, those of higher e.

I will argue in the next chapter that e is a prime candidate for characterizing

the gross evolution of a flare.

CURRENT SHEET DENSITY

At the outset of the density variation discussion, it bears repeating that the

density which premultiplies equation (3.4) is that of the radiating particles, i.e. the
runaway electrons which escape the current sheet to stream down to the chromo-

sphere. In Figures 3.5(a) and 3.5(b) we are varying the total density of electrons

in the current sheet. Of course increasing the total density will also increase the

numbers of runaways, all other things being equal. This is seen at the lower densities

in Figure 3.5(a), where a factor of 10 change in density produces a corresponding

change in thick-target emission. But all things are not equal. The factor of N

in equation (2.3) means that the electric field strength also changes. This means

that the density of runaways increases not merely because the thermal density does,
but also because the electric field accelerates more nonthermai electrons out of the

thermal distribution. This enhancement of nonthermal particles is seen to have a

dramatic effect at the higher densities, i.e. stronger electric fields.

Figure 3.5(b) shows the same spectra, but constrained as in Figure 3.2(b) for data

fitting. It is seen that, once the thermal part of the spectrum has been determined,

the nonthermal part changes with density in two ways. First, the nonthermal slope

becomes flatter with increasing density, since the electric field strength increases,

hardening the electron distribution. Secondly, although £cr is unchanged with den-

sity (28 keV for these spectra), the energy of departure from thermal bremsstrahlung

increases with density. This results from the steeper sloped spectra (lower densities)

requiring a larger area of emission to pass through the nonthermal constraint point

at 150 keV. For N = 101°cm -3, we have that Coo = 31keV which is only 3 keV

above Cc_. Thus at still lower densities the shape of the spectrum will change very

tittle (£co "* £c_ as N --* 0; eqns [2.10] and [2.3]) since the energy gain in the sheets

is approaching 0 and the normalization is constrained. The result is essentially a

bithermal distribution, with temperatures T and T±. On the other hand, as N gets

large so does/_, causing Eco to increase. Thus the slope asymptotically flattens, but

since it is constrained to pass through a data point (at 150 keV), the change due to

N is bounded for large as well as small N in Figure 3.5(b).

CURRENT SItEET LENGTH

A comparison of Figures 3.6(a) & (b) with Figures 3.5(a) & (b) shows that the

variations of the hard X-ray spectra with these two parameters are very similar. Re-

call that we are investigating the hard X-ray spectrum produced by particles which

have already been accelerated through a region of length L. Thus it is intuitively
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Figure 3.6(b): The same as Figure 3.6(a), except the spectra are constrained as in Figure
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obvious that increasing the acceleration distance will increase the numbers of par-
ticles with high energies.This in turn will increase the nonthermal character of the

spectrum, since electrons of energy g produce photons of all energies E < g. This is

what we see in Figure 3.6(a).

Figure 3.6(b) shows that almost any given change in the nonthermal part of the

spectrum can be caused by a corresponding change in either N or L. We again see

the changes bounded both above (as ,fco ---*g:, for L _ 0) and below (as gco ---* oo)
just as for density.

THICK- TARGET AREA

Varying the area of the thick-target emission simply raises or lowers the non-

thermal part of the spectrum relative to the thermal part, as we see in Figure 3.7.

It is best used as a constraining parameter for fitting observed spectra, as in the
figures above.

3.4 FITTING OBSERVED HARD X-RAY SPECTRA

With the six physically coupled parameters which are at our disposal, the spectra

are overdetermined, i.e. a unique fit to an observed spectrum cannot be obtained

(cf. Figs 3.4(a) & 3.7, or Figs 3.5 & 3.6). This is not the case for the "usual"

modeling, in which the temperature, emission measure, two spectral indices and

two break energies are all independent. If the electric field strength is expected to

change value during the course of a flare, then all of T, N, and e are required, as
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argued above. The emission measure is also expected to increase throughout a flare,

as the ambient plasma is continually heated. Heating is also the major consequence

of injecting a nonthermal beam of electrons into a thick target, and thus we also

expect the area of the heated target to increase as the cumulative effect of the

particle injection grows. We are thus led to hold the length, L, of the current sheet

constant throughout a flare. Other than these physical but qualitative arguments,

there is nothing which demands that this be the case. We could as easily hold N or

A constant. Simultaneous observations with high spatial resolution in hard X-rays,

as well as both high spatial and high spectral resolution in other wavelength regimes

(notably microwaves) are required to resolve this point.

To date, only the flare of 27 June 1980 (,'_ 1616 UT) has been observed with

very high spectral resolution, using a cooled germanium detector on a balloon flight

(Lin et al. 1981). This was the observation which discovered the superhot thermal

component of hard X-ray bursts. This component became visible near the peak of

the event, following which it became increasingly dominant at the lower energies.

As the flare progressed, the temperature of this component decreased gradually.

This flare provides the ideal testing ground for the ideas presented in this chapter.

In order to model the entire flare, additional information is required, as discussed

in the last paragraph. I have chosen to demonstrate the plausibility of the ther-

mal/nonthermal model by fitting two of the spectra from this event. These fits are

shown in Figures 3.8 and 3.9, corresponding to spectra #1 and #9 of Lin et al.

(1981), at the beginning and end of the impulsive phase respectively. The former

spectrum appears as a "pure" double power-law spectrum, while the latter has a

prominent thermal component at the lower energies.

The spectra were fit as follows. For both spectra, I have set L = constant

= 3 × 109 cm which leaves five free parameters. For Figure 3.9 the temperature and

emission measure were first determined by fitting only the six lowest energy chan-

nels with a pure thermal bremsstrahlung spectrum and minimizing the X_ statistic

(Bevington 1969).
This is a standard "goodness of fit" measure which is defined by

X2u- EN' N - u\ AI,(¢) (3.7)

There are N data points in the spectrum, [i(c) is the observed emission for the {th

data point, at photon energy E, I(_) is the calculated emission at the same photon

energy, AIi(_) is the standard deviation for the observed emission (the size of the

vertical error bar), and v is the number of degrees of freedom, i.e. the number of free

parameters available, in calculating I(E). In the case of the pure thermal fit discussed

here, N = 6 and v = 2 (temperature and emission measure). For the full spectra of

Figures 3.8 and 3.9 N = 30 and v = 5 (since we impose L = constant = 3 x 109 cm).

In the next chapter, for the spectrum of Figure (4.12), N = 34 and v = 8. In

general, a value of X2 near unity is desirable, and the smallest possible value of

X_, obtained by varying the input parameters of the fitting function [(E), provides

the best possible fit to the data using that fitting function. Having X2 < 1 can be

construed to mean that either the error bars are too large (the data is too noisy),

so that obtaining a good fit is trivial, or that there are too many free parameters in
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Figure 3.8: A theoretical fit to Spectrum #1 of Linet al. 1981, at the start of the impulsive

phase of a flare on 27 June 1980. The dotted line is thick-target bremsstrahlung from

runaway electrons accelerated in current sheets. The dashed line is thermal bremsstrahlung.

The sum of the two contributions provides an excellent fit to the data.
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3.8.
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the fitting function.

Having thus determined the temperature and emission measure for Figure

3.9, I then constrain the area by forcing the resulting nonthermal thick-target

bremsstrahlung spectrum to go through the point I(53.96keV) = 0.35. Deter-

mining this constraint was a matter of experimentation. I then chose a density, say
N = 2 x 1011 cm -3, and calculate X2,, via equation (3.7), for a range of e _= E/ED,

which entails calculating a 30 point spectrum for each e. I thus determine the value

of e which gives the lowest value of X_ for the chosen density. I then change the

density and repeat the process. If the best-fit e gives a lower X_ than before, the

density was changed in the correct direction. Eventually, the combination of N and

e is found which minimizes X2,. At this point the constraints on area and emission

measure are removed, and these quantities are varied independently until X2, is truly

at a minimum. In the unavoidable preliminary attempts to fit the spectrum, par-

ticular notice should be taken of this last step, which can lead to a very efficient

choice for the area constaint, in this case I(53.96keV) = 0.35.

Figure 3.8 is more challenging to the proposed model, since there is no obvious

thermal component to the observed spectrum with which to determine two of the

parameters. Nevertheless, by fixing both the area and the emission measure, as in

Figures 3-2b, 3-3b, and 3-4b, I could still minimize X_- This is done by first fixing

T, then iterating with respect to N and e exactly as before. Now, however, there is

no guarantee that the lowest possible X2, was found, so T must be changed and the

process repeated. For Figure 3.8, I stepped through T rather coarsely, in increments

of 107 K, and found the best fit at 9 x 107 K. It is possible that X2, will be slightly

lower for T slightly higher (maybe 9.2 × 107 K), but such an exact fit is not necessary

to demonstrate the plausibility of this thermal/nonthermal approach.

Figure 3.8 is particularly interesting in that the observation can be well fit only

with a significant contribution from thermal bremsstrahlung. This helps alleviate a

long-standing problem facing purely nonthermal models, namely that the numbers

of electrons required to generate the observed emission, and the energy in these

electrons, can be embarassingly large. A direct comparison is possible since, as

mentioned, this spectrum is also well fit by a purely nonthermal double power-law

description (Lin and Schwartz 1987).
The results are summarized in Table 3.1. The values for the electron and energy

fluxes were calculated from equations (3.5) and (3.6). The first line contains the

values obtained with the nonthermal distribution function, equations (2.36) and

(2.35), the use of which gives

F_:>_'¢,- 1.6 x TO-9yN_'m(pc°)(mc ) In +

f oo ]_o _72_---- _ d 7 electrons sec -1 (3.8)

: ,,o. +
\mcl I.mc mc \(pc,/mc) + 7_,1

77+1
ergs sec -1 . (3.9)

D
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Table 3.1: Nonthermal Fluxes for Figure 3.8

Thermal/

Nonthermal

Pure

Nonthermal

F

electrons sec -1

9.5 x 1033

7.9 x 103s

9.0 x 1026

2.4 x 1028

The second line of Table 3.1 uses the broken power-law spectral parameters of Lin

and Schwartz (1987), and the spectral inversion method of Brown (1971).

It is seen that F is reduced by a factor of more than 80 while .T is reduced

by nearly a factor of 30. If these energy fluxes persisted for the course of the

flare (,'_ 180 see), the present model would represent a savings in the total energy

budget of 4 x 1030 ergs, which is rather substantial. There are two reasons for the

lower nonthermal fluxes that we see in Table 1. First and obviously, some of the

radiation of Figure 3.8 is now produced by thermal electrons, reducing the need for

nonthermal particles. The second and more subtle reason is that the low-energy

cutoff to the nonthermal electron distribution function is gcr ( = 35.7 keV) in this

model which is significantly higher than the low-energy cutoff used by Lin and

Schwartz (go = 13 keV), again leading to fewer nonthermal particles.

The problem of determining the low-energy cutoff of nonthermal electrons is a

long-standing one. Invariably, this cut-off is set by the limitations of the detector.

The usual argument is that if a power-law photon spectrum is observed down to some

minimum photon energy, then the power-law electron distribution which generates

it must extend down to a comparable energy, or else the spectrum would begin to

flatten out at the lower energies. Thus the low-energy cut-off was taken to be 13

keV for the cooled germanium detector (Lin and Schwartz 1987), 20 - 25 keV for

the HXRBS detector on the Solar Maximum Mission satellite, and will probably be

,,_15 - 18 keV for the BATSE detectors on the Gamma Ray Observatory satellite.

Yet it's rather unsettling to try and believe we are really learning something about

the sun this way. In the present model, on the other hand, the low-energy cutoff is

precisely £c, which is determined on physical grounds. We see in Figure 3.8 that

the nonthermal spectrum does indeed begin to flatten below this energy, but the

difference is made up by thermal bremsstrahlung emission.

It was not intuitively obvious that the thermal/nonthermal model presented

here would satisfactorily fit a spectrum such as we see in Figure 3.8 The fact that

it does points to the versatility of this approach. In the next chapter, yet another

demonstration of this versatility will be presented.
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3.5

CHAPTER 3. THERMAL/NONTHERMAL HARD X-RAYS

MODELING HARD X-RAY IMAGES OF 2-RIBBON

FLARES

3.5.1 INTRODUCTION

We can employ the scenario envisioned in §3.2, incorporating a large current

sheet coaligned with the top of an arcade of magnetic loops, to model how a two-

ribbon flare would look in hard X-rays. An approach similar to this may in fact be

used in conjunction with any model for the hard X-ray production.

An instrument capable of imaging the sun in hard X-rays (-._ 20 - 1000 keV)
with ,._ 1 arc-second spatial resolution is currently under development at NASA's

Goddard Space Flight Center, providing the motivation for this modeling. It uses

the technique of Fourier-transform imaging, involving pairs of collimated slit-slat

grids of various slit-slat spacings and orientations. Each pair of grids is separated

by -._6 feet, and together this pair is called a subcollimator. Further instrumental

details need not concern us (see Crannell 1989 and Prince et al. 1988 and references

therein) but I would like to recap some of its history. As originally proposed, this

balloon-borne instrument was called GRID (Gamma Ray Imaging Device) and had

34 subcollimators arranged in an array. The axis of the array was then pointed at

the sun and translated, perpendicular to itself, causing the entire array to execute a

circular motion parallel to the plane of the solar disk, generating the Moire patterns

which, upon deconvolution, produced the images. Due to funding cuts, the project

had to be scaled down to 22 subcollimators, then it was cancelled altogether. Finally,

the project was revived as HEIDI (High Energy Imaging Device). In its current

modest form, HEIDI has only two subcollimators, but now they are rotated around

their axis, providing adequate coverage of the u-v plane to ,-- 5 arc-second resolution.

There are plans to upgrade it to 4 subcollimators. In its final envisioned form, as

HEISPEC (High Energy Imaging Spectrometer) to be incorporated in the sought-

after HESP (High Energy Solar Physics) satellite, the instrument will have < 1

arc-second spatial resolution.

The modeling discussed in this section was performed with a 22-element GRID

instrument in mind, and I will refer to it as such. It is important to note, however,

that except for the computer simulations in §3.5.3, the ideas which make up the

modeling technique are instrument-independent.

There are three distinct regions of hard X-ray emission, two of which have the

same characteristics. These are the "footpoint ribbons", whose non-thermal emis-

sion is produced by electrons, energized in and then scattered out of the current

sheet, streaming down the magnetic loops and impinging on the chromospheric

plasma, where they emit thick-target bremsstrahlung (cf. Fig 1.3). These ribbons

are modeled with either a "hard" broken power-law spectrum, or with a "softer"

single power-law spectrum.

The third emission region modeled is near the top of the arcade, tIere, Joule

heating by the current sheet will locally increase the temperature above that of the

ambient coronal plasma. This is modeled with a thermal bremsstrahlung spectrum.

In addition, the current sheet may generate some low-level plasma turbulence, which

may provide further acceleration and/or heating through stochastic processes. This

is not modeled here, however, since the more complex theory called for is not justified

m
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by this zeroth-order model for GRID.

Also not modeled is a possible energy gradient along the length of the ribbons.

A fraction of electrons will remain in the current sheet longer than average, reaching

higher energies at locations farther down the sheet. Because of the directionality of

the electric field and current, these highest energy electrons will exist only near one

end of the sheet. When finally scattered out, they are capable of producing higher

energy bremsstrahlung than their counterparts farther up the current sheet.

3.5.2 PROCEDURE

Recall that the flare image will have three parts: 2 footpoint ribbons which ]

assume to be identical, and the higher-altitude region at the top of the arcade. The

reader is urged to refer back to Figure 1.3. The procedure employed to construct

the model hard X-ray images has seven steps.

1.) Pick an image geometry, that is choose the dimensional size of the model

flare, the ribbon orientation with respect to the solar equator, and the angular
distance from the center of the solar disk.

I assumed a total flare area of 1019 cm 2, apportioned as shown in Figure 3.10. I

also assume that the top of the arcade is 109 cm above the ribbons, giving rise to

projection effects (cf. Fig 1.3). Some of the geometrical possibilities are shown in

Figure 3.11. The top three panels (a, b, and c) depict the flaring magnetic arcade

of Figure 3.10 (or 1.3) oriented parallel to the sun's equator (i.e. East-West) at 45 °

East longitude, disk center, and 75 ° West longitude respectively. The bottom three

panels show the same flare at the same longitudes, but with a North-South orienta-

tion. Note that as the longitude changes, the higher-altitude arcade top is projected

eastward or westward due to the curvature of the sun. In panel 3.11(d), this results

in only two components being visible, the arcade top being projected on top of (and

thus enhancing the brightness of) one of the footpoint ribbons. Similarly, a flare

occurring near the limb of the sun, as in 3.11(c) and 3.11(f), is greatly foreshort-

ened. More complicated flare geometries, such as curved or non-parallel or sheared

ribbons, are of course possible.

2.) Pick an emission model, that is choose a combination of thermal (at any

temperature) and nonthermal (either "hard" or "soft") X-ray spectra.

For a large two-ribbon flare, I used a flctional,"typical" spectral flux of photons

detected at the Earth -- obtained from looking at many flares in the literature,

e.g. Lu and Petrosian (1989, 53 flares), and Kaastra (PhD. Dissertation, Univ. of

Utrecht, Netherlands, 1985, Chapter 6, 67 flares).

Such a typical "hard" broken power-law spectrum is:

dN_ 107_3. _ (20<E<80keV)
d¢

dN
- 8 × 10sE -4"5 (_ :> 80keV). (3.10)

dE

A typical "softer'non-thermal photon spectrum is:

dN
- 2 x 10se -5 . (3.11)

de
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The premultipliers and energy spectral indices in these nonthermal spectra can be
changed as needed.

A typical thermal spectrum is:

dN
- 106e -1"4 exp(e/kT). (3.12)de

in which only the premultiplier and temperature can be varied (see eqn [3.3]).

3.) Identify the thermal (nonthermal) emission with the arcade top (footpoint

ribbons), and calculate the projected area of each of these components.

To 1st - order, this involves multiplying the East-West dimensions by cos 0 where

8 is the longitude angle. The North-South dimensions are similarly multiplied by
the cosine of the latitude. In these models, the flare is assumed to be on the solar

equator, so the North-South dimensions are unaffected.

4.) Integrate each spectrum over energy.

Since GRID's energy range is 20 - 1000 keV, the detected flux at the Earth, In$,
of photons having energies E > n keV is

lOOO

Ins = J dN de photons cm-2s -'.
n(>20) de (3.13)

The results for the three spectra given above (thermal and both hard and soft non-

thermal) are given in Table 3.2.

Table 3.2: Detected Photon Fluxes (photons cm -2 s-1)

Spectrum

"Hard"

"Soft" 312.5 19.53 3.86 1.22 0.50

Thermal

T = 107 K

3 x 107

5.8 x 107

10s

3x 10s

I20_ I40_ I60e /sos L00e
2,216 375.3 123.5 49.9 22.85

10 -6

14.86 0.003 10 -6

1,064 8.27 0.09

8,622 377.1 22.44

81,250 18,770 5,582

10-3 10-5

1.53 0.113

1,858 660.4

Model

1

2

5.) Multiply by 4_r(1 AU) 2 to get total photons emitted per second by the flare.

This assumes isotropic emission.

In = 4_'(1 AU)2In¢ photons s -1 , from the sun. (3.14)
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6.) Divide this rate by the projected area of the relevant component of the

flare. This gives the photon flux from each spatial component at the sun.

7.) Use this information as input to a simulation routine to determine what

GRID will actually see.

3.5.3 RESULTS AND DISCUSSION

Simulations were performed, by Dr. Gordon Hurford at the California Institute of

Technology, for two models on the geometry of Figure 3.11(a).

Footpoints: Hard Non-Thermal
Model 1 { Arcade Top: T = 5.8 x 107 K.

Footpoints: Soft Non-Thermal
Model 2 { Arcade Top: T = l0 s K.

The photon fluxes associated with these models are indicated in Table 3.2. Maps

were generated of the spatial distribution of photons having energies > 20, 40, and

80 keV for each model, showing the energy dependence of the emission. These are

Figures 3.12(a)- (c) and 3.13(a)- (c).
Low-level background noise was added, and atmospheric attenuatic)v was taken

into account. Both processes are energy-dependent in the simulations. Each map

simulates a 2-second observation.

The maps were obtained using a straightforward application of the CLEAN algo-

rithm. No additional special care was taken (intentionally) in either generating or

cleaning the maps. In this sense, these maps represent a pessimistic view of GRID's

true capabilities.

The large size of the simulated flare produced a significant response in only the

coarser of GRID's subcollimators. In Figure 3.12(a) I have shown the input "flare".

This position and orientation remains the same for all 6 maps.

Figures 3.12(a) - (c) show the simulated images for a flare represented by Model

1 above. The three images show the energy dependence of the emission. Figure

3.12(a) represents the total photon flux that GRID would observe, i.e. _ > 20 keV.

The following two figures show the flux at successively higher energies, E > 40,

and > 80keV respectively. Since this model has a hard nonthermal spectrum at

the footpoint ribbons, and a rather moderate thermal component, we expect the

footpoint emission to dominate, and it does. Notice in Figures 3.12(a) and (b),

that the brightest emission is straddling a more modest "source". This would be a

signature of the hard X-ray production scenario sketched in connection with Figure
1.3 when particle acceleration is as important as the plasma heating. In fact, if

we employ equation (3.6) to calculate the energy flux of the nonthermal electrons

which produce the thick-target spectrum (3.10), we find 5 x 1029ergs deposited

in two seconds. The energy in the thermal electrons, on the other hand, is ,,_

(3/2)NkTV, where V = EM/N 2 is the volume of the thermal plasma. For the

chosen geometry, the volume is ,,_ 2 × 102z cm 3 while the emission measure is EM =

(106/1.3 x 106)(kT) °'1 _ 9 x 104Zcm -3. This gives us the density N ,- 1.7 x

101°cm-3,and hcnce_he energy £ _ 6 x 10_9ergs, comparable to the nonthermal
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electrons' energy. Another characteristic would be that the central component, being

thermal, would fall off much quicker at high energies than the nonthermal emission.

This is in fact seen in Figure 3.12(c).

A similar calculation for Model 2 yields a nonthermal electron energy of 2.0 x

10_gergs for 2 seconds, and a thermal electron energy of 1.1 x 103°ergs, nearly an

order of magnitude greater. Thus we expect the thermal to completely dominate the

observed flare, except at the highest energies. This is seen in Figures 3.13(a) - (c).

In the last of these figures, it is difficult to say how much of the observed structure

is real, as opposed to noise, since the total integrated flux is only 3.7 photons crn -2
S-1.

Comparing the rate at which the total flux falls off with energy in the two models,

points to the great importance of such high resolution imaging for localizing the
thermal and nonthermal emissions in a flare. The fact that the emission in Model 2

drops by a factor of 2,500 over a range of 60 keV is very strong evidence that it is of

a purely thermal nature. Similarly, the total flux in Model 1 drops by only a factor

of 60 over 60 keV, indicating that much of the emission must be of nonthermal

origin. In particular, the highest energy emission seen is almost certainly of a

purely nontherrnal nature. Even if this emission were obscured by thermal emission

in the lowest energy channels (which it is not in this case), it would still be readily

identifiable at the highest energies, since the thermal emission falls off so rapidly.

If the temperature of the thermal plasma is much in excess of l0 s K, we are back

in the realm of the simple thermal models (see Chapter 1 and Table 3.2) in which

nonthermal emission, even if present, will go largely unobserved.

The development of a hard X-ray imaging instrument, such as GRID, is a long-

awaited and scientifically significant step forward in the study of solar flares, as

demonstrated in this section. Such an instrument, having high spatial, spectral,

and temporal resolutions, will give us an unprecedented view of, and information

about, the solar flare phenomenon. Of primary importance is the ability to spatially

separate the relative contributions of thermal and nonthermal components of the

emission. As stated in Chapter 1, and repeated here, the scenario modeled in this

section is only one of several possibilities. Thus a GRID-like instrument will enable

us to discriminate among various theoretical models, which in turn helps us to refine
our understanding of solar flares.
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TOTAL INTEGRATED FLUX: 5,720 photons cm -" s -z

CONTOURS: 10, 30, 50, 70, 90% of peak flax.

SUBCOLLIMATORS: 10 of 22 had significant response,

120

The brightest contours are clearly asso- 80

ciated with the footpoints. Note espe-

dally the 50% contours between the foot-

points and compare with the nominal

fluxes for I20_: Non-Thermal, 2,216; Ther-

mal, 1,064. In this map, as in all of the 40

following maps, there is an offset of 1 pixel

(_" 2 arc-seconds).

i ! I •

0 40 80 120

Arc-Seconds

Figure 3.12(a_): Simulated hard X-ray emission for GRID Model 1 -- I_o_. The input

"flare" is superimposed on the emission. The inset shows the beam used in the simulations•
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TOTAL INTEGRATED FLUX; "/36 photons cm -_ s -I

CONTOURS: I0, 30, 50, 70, 90% of peak flux,

SUBCOLLIMATORS: 12 of 22 had significant response,

The brightest contours are again clearly

associated with the footpoints, which are

now showing an elongation,

MODEL I -- I4o,

120

8O

4O

..... ,....... i-" , ............... ,..... .
I I

I _ 1 _ I

0 40 80

Arc-Seconds

120

Figure 3.12(b): Simulated hard X-ray emission for GRID Model 1 -- I4o_



3.5. MODELINGtfARD X-RAY IMAGESOF 2-RIBBONFLARES 57

MODEL 1 -- Iso_

TOTAL INTEGRATED FLUX: g0 photons cm -_ s -l

CONTOURS: 10, 30, 50, 70, 90% of peak flux.

SUBCOLLIMATORS: 12 of 22 had significant response.

Above 80keV in this model, only the foot-

point ribbons are detectable above noise
levels.

120

8O

4O

t 1 I

I , I , !

0 40 80

Arc-Seconds

f

120

Figure 3.12(c): Simulated hard X-ray emission for GRID Model 1 -- Is0e
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TOTAL INTEGRATED FLUX: 9,216 ph6tons cm -_ s -z

CONTOURS: I0, 30, 50, 70, 90% of peak flux.

SUBCOLLIMATORS: t2 of 22 had signiF,c_.at response.

The emission in Model 2 is entirely due to

the thermal component at energies up to

,--80keV. Again, the 1 pixe] offset is appa-

rant, but now in the East-West direction.

MODEL 2 -- I2o_

I I

120

8O

40

0 40 80

Arc-Seconds

Figure 3.13(a): Simulated hard X-ray emission for GRID Model 2 -- I20_

120

L
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MODEL 2 -- f4o_

TOTAL INTEGRATED FLUX: 429 photons cm -_ s-'

CONTOURS: 10, 30, 50, 70, 90% of peak flux.

SUBCOLL]MATORS: 12 of 22 had significant response.

Again, all of the emission is coming from
the hotthermal plasma near the top of the

magnetic arcade.

120

8O

4O

I I l

I , I , I

0 40 80

Arc-Seconds

120

Figure 3.13(b): Simulated hard X-ray emission for GRID Model 2 -- I40_
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MODEL 2 -- Is0e

TOTAL INTEGRATED FLUX: 3.7 photons ¢m -_ s -1

CONTOURS: 10, 30, 50, 70, 90% of peak flux.

SUBCOLLIMATORS: 22 of 22 used by GRID for this

map.

Near 80 keV in Model 2, the thermal and

non-thermal emissions become compara-

ble. This, together with the weakness of

the source at these high energies, produces

the complicated map shown. Though dif-

ficult to interpret, the source geometry is

clearly different from that of the purely

thermal emission at lower energies.
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Figure 3.13(c): Simulated hard X-ray emission for GRID Model 2 -- Isoe
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Chapter 4

THERMAL/NONTHERMAL
MICROWAVES

4.1 INTRODUCTION

Impulsive microwave radiation carries a great deal of information about the phys-

ical conditions in the solar atmosphere immediately after the onset of a flare. The

microwaves, at frequencies ranging from I or 2 GHz to ,,_100 GHz, are widely agreed

to be produced primarily by gyrosynchrotron radiation from mildly relativistic elec-

trons spiralling along magnetic field lines in the flaring region.

The argument for gyrosynchrotron emission can be made by eliminating the

other two radio emission mechanisms, namely bremsstrahlung and plasma radiation

(Kundu 1965). Plasma radiation in its various forms is narrow-band emission, re-

sulting from collective motions of plasma particles in response to some disturbance.

These motions then either generate, or couple to, an electromagnetic wave in the

plasma having a frequency matching that of the particles' oscillations. This fre-

quency could be, for example, the plasma frequency (vp = x/Ne2/rcm), or the upper

hybrid frequency (_'h = N/f_p2 + v_ with the electron gyrofrequency Vb = eB/(2_mc)).

ttere N is the plasma density, e and m are the electron charge and mass respec-

tively, B is the magnetic field strength in Gauss, and c is the speed of light. For

the solar corona, the plasma frequency is generally less than 109 Hz = 1 GHz, since

the density is less than 10 l° cm -3. The upper hybrid frequency can lie in the mi-

crowave regime for strong enough magnetic fields. Thus, although such radiation is

frequently observed in the MHz range at meter wavelengths (cf. Fig 1.1), it is less

seen in the microwave regime (u :>,,_ 1 or 2 GHz), and in any event, is narrow band

emission, in contrast to the broad band (,,_ 1 - 100 GHz) radiation of interest here.

An individual electron in a plasma is accelerated in the Coulomb field of other

charged particles, and emits bremsstrahlung radiation, as discussed in §3.1. For

microwaves, in contrast to X-rays, the energy of the radiation is much less than

the kinetic energy of the electron (E ,,, AE ((C), meaning that small accelerations

due to distant encounters with other charged particles are the dominant factor. In

the sun's atmosphere, however, the presence of a magnetic field provides another

acceleration mechanism, the centripetal acceleration due to the Lorentz 9"×/_ force

which causes the electron to spiral around a magnetic field line. The frequency with

61
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which the electron completes a circuit of the field line is known as the gyrofrequency,

_'b = eB/(2rmc) ,,_ 2.8 × 106B where B is the magnetic field strength in Gauss and

c is the speed of light.

The centripetal acceleration imparted to the electron produces radiation having

different characteristics, depending on the energy of the electron involved (cf. Dulk

1985). A nonrelativistic electron emits radiation, over a narrow range of frequencies,

at the gyrofrequency and perhaps at the first few harmonics of Vb. This is the case

in the chromosphere and quiet corona, at temperatures of less than a few million

degrees, where the electron thermal velocity is < 1 - 2% of the speed of light. During

flares, however, Vth can exceed 0.1c, and runaway acceleration in current sheets

can impart very high energies to some electrons. For these latter particles, the

ultrarelativistic approximation (7 >> 1), leading to the formulae for synchrotron

radiation, could perhaps be used. For an isotropic pitch angle distribution, this is

broad band emission centered at harmonic number s __ (Tsin {?)3, where 7 is the

Lorentz factor, and 6 is the angle between the magnetic field and the wave vector

(our line of sight). Unfortunately, flare conditions are such that most of the radiating
electrons are in the mildly relativistic regime, where no accurate approximations can

be made. Such radiation by mildly relativistic particles is called gyrosynchrotron
radiation.

The free-free emission is proportional to N2T -1/_ (cf. Ramaty and Petrosian

1972) and gyrosynchrotron emission is proportional to NT_B b, with a and b both

greater than 1 (cf. Crannell et al. 1988). Thus the ratio of free-free to gyrosyn-

chrotron emission is proportional to N/(T_+'SBb). General conditions in the solar

atmosphere are such that this ratio can be either greater or less than one. During

flares however, both magnetic field strengths and especially temperatures are so high

that the contribution from bremsstrahlung in the microwave region of the spectrum,

is generally negligible compared to gyrosynchrotron emission. We are thus left with

gyrosynchrotron radiation as the mechanism for generating microwave bursts during
solar flares.

In principle, high quality spectral observations of impulsive microwave emission,

supplemented by spatial information, can provide information about not only the

ambient magnetic field and various plasma parameters (e.g. emission measure and

temperature for thermal models, electron energy distribution for nonthermal mod-

els) in the emission region, but also the source size and geometry. This is because

the lower microwave frequencies are generally optically thick, while the higher fre-

quencies are optically thin. This contrasts with the X-rays, which are all optically
thin.

Such high quality observations, as represented by those obtained from the

frequency-agile interferometer at Owens Valley Radio Observatory (OVRO) (St£1i,

Gary, and IIurford 1989, 1990; hereafter SGH1 and SGH2), are now available. These

observations are providing strong challenges to the conventional modeling of mi-

crowave bursts as being produced either by ultra-hot (T > 10SK) isothermal plas-

mas or by simple power-law electron distributions (SGH1). In particular, the OVRO

observations have shown that: (a) ,,_80% of microwave bursts show complex spectra,

containing two or more peaks in flux density; (b) slopes on the low-frequency side of

the spectrum are frequently steeper than expected for nonthermal gyrosynchrotron

radiation; and (c) the peak frequency of the spectrum does not shift as expected
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during flare development.

Some aspects of the spectra can be modeled as a superposition of spatially dis-

tinct source regions, and/or of other plasma or magnetic field inhomogeneities. Si-

multaneous high-resolution microwave imaging of the bursts can help to clarify the

spatial structures involved in complex events (Velusamy and Kundu 1982; Kundu

et al. 1982; Itolman et al. 1989; Willson et al. 1990; Bogod et al. 1990; Gary

and Hurford 1990). It is, however, difficult to see how inhomogeneities can produce

steep optically thick spectral slopes and relatively fixed peak frequencies without

making very special ad hoc assumptions on a case by case basis.

In addition, many events show a convolution in time of both the primary and

secondary components (SGH1, SGIt2), providing strong evidence that they have

a common origin. In modeling the components independently one is faced with

a difficult theoretical conundrum. If the spectral components arise in the same

location, how does the plasma support two non-interacting radiating populations

of electrons for the duration of the burst? Conversely, if they arise in different

locations, through what mechanism are these different locations coupled, strongly

enough for them to coevolve throughout the course of the burst?

In this chapter, I will investigate microwave spectra using the ther-

mal/nonthermal approach. I employ the basic formulae of gyrosynchrotron radi-

ation, using no approximations, and use for the electron distribution function a

nonthermal tail joined to a bulk Maxwellian (eqns [2.49] - [2.54]). Although hybrid

distribution functions have been used before (Emslie and Vlahos 1980; Mok 1983),

and the effects of a thermal plasma on a nonthermal population have been touched

upon by various authors (e.g. Ramaty 1969; Klein 1987), the general approach taken

here both uncovers some important new effects, and can serve to clarify some of the

previous work.

In §4.2 I briefly review the gyrosynchrotron radiation formulae, and discuss the

calculations. In §4.3 I sketch out how this radiation can be related to current

sheets. §4.4 is devoted to an analysis of the resultant theoretical spectra, and §4.5

relates these results to observations and demonstrates the applicability of the model.

Finally in §4.6 we summarize the results of our study.

4.2 GYROSYNCHROTRON RADIATION

4.2.1 GYROSYNCHROTRON FORMULAE

The following formalism is based on Ramaty (1969), as corrected by Trulsen and

Fejer (1970). Further details may be found in Ramaty (1969).

The radiation intensity from a homogeneous source region is

I+(u, O) = j:l: [1 - exp(-n+D)] ergs(sec sterad Hz cm2) -1 .
t_4-

(4.1)

Here j is the emissivity, _ is the absorption coefficient, D is the depth of the source,

_, is the observation frequency, 8 is the angle between the wave normal and the

magnetic field direction (0 < _ < r), and Jr (-) refers to the ordinary (extraordinary)

mode of polarization. The quantity _D is known as the optical depth of the source,
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and many authors denote it by r. Note that equation (4.1) is radiation intensity

per unit source area. The total intensity is then I = I+ + L.

For an electron distribution function of the form Nrf(r,¢), where N, is the

number density of radiating electrons, r = (1 - fl2)-1/2 is the Lorentz factor with

fl = v/c, ¢ is the electron pitch angle, and

2_ dr d(cos¢) f(r, ¢) = 1,

the emissivity and absorption coefficient are given by

j+(v,O) = 27rNr d r d(cos¢) f(7,¢)r/+(v,O,7,¢) ,
1

_+(_,e) /5(/;2r N_ d r d(cos¢)rl_(v,8,r,¢)x
mu2ni 1

, (4.4)

where n is the index of refraction (given below) and 7/is the gyrosynchrotron emis-

sivity for a single electron:

- [ ]r/±(v,O, 7,¢)= 27re2v2 _ _n_ (cot0 flcos¢_
c ,=-_ 1 + a_+ ao± \ --n+ s_nS] J,(x,) - fl sin ¢ J_(xs)

x tS(v - su.._._.__ n±ufl cos¢ cosS). (4.5)
r

Here, x, = (,n±flsinCsine)/(1- n+flcos¢ cose), J, is a Bessel function of
order s, and the prime denotes differentiation with respect to the argument. For u

greater than the radiation cutoff frequencies, we have the restriction s > 0. These

cutoffs are: the plasma frequency, vp = ff(Ntote2/rrm) for the ordinary mode (o-

mode); and u= = Ub/2 + (U2p+ v_/4) 1/2 for the extraordinary mode (x-mode). The

electron gyrofrequency is Ub = eB/(2_rmc), and Ntot is the plasma density, including

non-radiating particles. The 0-polarizatlon coefficient, ae, and index of refraction

are given by

a_±(_,e) = -2_,(,,_- v2)cosO
sin'O+ sin O+ - cos O]'n

(4.6)

n_:(O) -- 1+ 2v_(v_ - ,v 2)

-t- [v4v_ sin 4 8 + 4v2v_(v 2 - v2)2 cos2 8J 1/2 - 2v2(v_ - v 2) - v2u_ sin 2 8

(4.7)

Note that, by not restricting n to be unity, the effects of Razin suppression at low

frequencies are included.
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Because of the presence of the Dirac delta function in equation (4.5), one of the

integrals can be done analytically. For 0 # 7r/2, the resonance condition eliminates

the integral over d(cos ¢), giving us:

j+(u,O) = 47r2e2uN 1 f°°l s'"_icosOic(l+a_a: ) d7 _ f(7,¢,)/3 -1 x
_. "rnin

_(_,, O) =

where

[a0+ \(c°tOn=l: t_c°s¢'_J'(x')-/3sin¢'d:(x')] 2}sinO ]

47r2e2N 1 f_ s._._mcvlcosOI n+(1 +a_+) d7 _ /3-1 ×
8rnin

/320 .,/3cos0-cosCo- "Y_ _, /3-? ] + _-_77in¢ _f('r,C)],_=,_,x

\ n+ si_n-o] J,(x,) -/3 sin C,

1 - SVb/7V sn+/3 sin 0 sin C,
COS Cs -- , Xs =

n+_ cos/9 1 - n+/3 cos 0 cos ¢s '

(4.8)

(4.9)

smi, = l+ Integer [_b(1- n+_cosO)] , and s,_a_: = Integer[_(l+n+/3cosO)] .

Note that J_(x)= ] [J,-l(X)- J,+l(X)].
An alternative approach is used to computing j and n that allows the summation

over s to be taken outside of the integral. The expressions for j and a are the same

as above, but the integration over 7 is from 71 to 72 and the summation is from a

minimum value of s to s = oo:

s > (1 -- n2_ cos 2 O) 1/2 (4.10)

(SUb/U) 2 + n_ cos 2 0 , . (4.11)
71(2)

(_.b/.) + (-)-_ Icos01 [(_b/-) _+ "_ cos_0- lJ1/2

When 0 = r/2 we use the _-function to integrate over 7, and obtain the following

expressions for j and n:

3+(v, _)-" 7r 4r2e2Nc vbn+ _ 15, , d(cos C) f(%, C)Y+ (¢), (4.12)
.*=1

4_N _j':_b /3, d(cosC)Y_(C) x
mcv2 s=l 1

- 7 "_7 _ f127 sin C -_=_¢,.#=/_,

where Y+(C) = [J,(x*)] 2 c°s2 C , Y-(C)

(1 -- 7[2) 1/2 , and x_ = s/3,n+ sin C.

[J,_(x,)] 2sin2¢ , 7,
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4.2.2 GYROSYNCHROTRON CALCULATIONS

The above formulae are valid for the general distribution function f(7, ¢). We

are primarily interested in thermal vs nonthermal effects, and so to gain a certain

measure of simplicity, I shall discard any C-dependence in f. I therefore use the

isotropic bulk thermal distribution with a power-law tail of §2.3.

For the remainder of this chapter, I will refer to the distribution function (2.53) as

a "TNT" (Thermal/NonThermal) distribution function, and a spectrum generated

by such a distribution function I will call a TNT spectrum. Similarly, distribution

functions and spectra based on only the first or second term of equation (2.53) I shall

refer to as of type "TH" or "NT" respectively. As discussed repeatedly throughout

this dissertation, the physical distribution function which is expected to be found in

solar flares is a single, unified, smooth distribution of momenta, reflecting cotemporal

heating and particle acceleration. The separation of such a function into separate

thermal and nonthermal parts as is done here (eqn [2.53]), is a mathematical, and

especially an analytical, convenience.

I have used a numerical code based on equations (4.1) and (4.5) through (4.11),
allowing for Bessel functions to be calculated out to order 1,050 as needed. This

is sufficient to allow calculation of gyrosynchrotron spectra, with a 1% accuracy,

from the plasma cutoff frequency out to about the 35 th harmonic of the electron gy-

rofrequency. Each spectrum in practice runs from 1.001up to 33Ub. I will show that

the most interesting phenomena occur at the lower harmonics (s < 10) and thus

the code is quite inclusive. The integrals are performed via the Gaussian Quadra-

ture method, allowing the use of up to 256 points for estimating the value of the

integral. If the desired accuracy cannot be achieved, the code uses the cautious,

adaptive Romberg extrapolation method, repeatedly subdividing the interval be-

tween the limits of integration, until the change in error estimate is within the error
requirements.

Into this code I insert the model distribution function, equation (2.53) (eqns

[2.49] through [2.54]). I allow the Lorentz factor 7 to range from very close to

one out to 7 = 10. We cannot allow 7 = 1 because equations (4.8) and (4.9) are
singular for particles at rest. I do however include energies much less than thermal.

Particles having energies much in excess of 1 MeV contribute negligible amounts to

the radiation being studied. I have found that lowering the high-energy cutoff from

3' = 10 has no effect on the resulting spectra until 7m_x reaches ,,_ 2.5 - 3, when it

starts to affect the higher harmonics in the optically thin part of the spectrum. Our

allowed range of 7 is thus quite inclusive. I have found excellent agreement with

Ramaty (1969) for the NT case.

In order to compare with observations, I choose a depth, D, for the radiating

source and assign the source an effective area A. This allows the radiation intensity

to be computed in solar flux units (1 sfu= 10-19erg cm -2 sec -1 Hz -1) for each

polarization mode, by multiplying equation (4.1) by 1019A/(1 AU) 2.

There are eight necessary input parameters for computing a spectrum: T and

gth which characterize the thermal contribution to the distribution; e and _ which

characterize the nonthermal component; the magnetic field strength B, source depth

D, and area A, which characterize the emitting region in which the single TNT
distribution resides; and the viewing angle 6, between the wave vector and the

!
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magnetic field direction, characterizing our orientation with respect to the source

region.

Three complete spectra can be calculated for each set of input parameters. The

spectra are based separately on equations (2.53), (2.50), and (2.49), i.e. spectra of

type TNT, TH, and NT respectively. This allows us to assess the relative contribu-

tions of thermal and nonthermal particles at each point in a TNT spectrum.

The individual harmonics of both the emission and absorption coefficients can be

separated out, in each of the two polarization modes, for all three types of spectra.

4.3 CURRENT SHEETS AND MICROWAVES

The relationship of the microwave radiation to current sheets is both simpler and

more complex than that of the hard X-rays. This is because the gyrosynchrotron

radiation is not expected to arise in the current sheets themselves. Rather, the

microwave-emitting electrons are expected be thermal electrons in the heated ambi-

ent plasma surrounding the current sheets, and nonthermal electrons scattered out

of the current sheets and into the ambient plasma.

The reason for not considering the current sheets as the major sources of the

microwave radiation, is because the magnetic field is either absent, or parallel to

/_, as discussed in §2.1. Since gyrosynchrotron emission depends on the electron's

perpendicular component of velocity with respect to the magnetic field, the emission

is either absent (/_ = 0), or generated by thermal velocities only, since all of the

nonthermal energy gained by an electron is directed along the magnetic field.

Although the thermal plasma has none of the complications of a thermal current

(§2.2), the mechanism by which nonthermal electrons are scattered out of the cur-
rent sheets is poorly understood. It is implicit that Coulomb scattering cannot be

responsible, because the runaway electrons are nearly collisionless with respect to
Coulomb collisions. Thus some turbulence or other current sheet instabilities must

be present in order to provide the required pitch angle scattering. This is a subject

for future research (§5.2).

The approach taken here to modeling the microwaves is therefore largely de-

scriptive, employing a spectral index _f, and using e primarily as a low-energy cutoff

parameter. This is in contrast to the treatment given the hard X-rays in the last

chapter, in which more physical parameters, such as current sheet length and elec-

tric field strength, were used. The choice of gc_ (i.e. e) for the low energy cutoff to

the nonthermal portion of the electron distribution function, reflects the fact that

that electrons within the current sheets having g < gcr serve to primarily heat the

plasma, whereas those with £ > ,for are the nonthermally accelerated particles. It is

possible to still interpret e as the dimensionless electric field strength. The spectral

index _, however, will be a complicated function of electric field strength, current

sheet length, and scattering mechanism (cf. Figs 2.3 and 2.4).
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Figure 4. i: A typical TNT gyrosynchrotron spectrum as discussed in the text. Our plotting

convention for this and all figures, unless explicitly stated otherwise, is: solid line = TNT

spectrum; short dashed = NT; long dashed = TH. The transition frequencies are near _'1

and L,_. The input parameters are: T = 2 x l0 sK, Nth = 109cm -a, _f = 3, c = 0.05,
B=200G, D= 10Scm, 0=45 °,A=D _.

4.4 THEORETICAL MICROWAVE SPECTRA

4.4.1 GENERAL RESULTS

The spectrum of Figure 4.1 shows many of the features typically seen. The

plotting convention, consistent with that of §3.3 and §3.4 is: the solid line is the

calculated TNT spectrum, the short dashed line is NT, and the long dashed line

is TH. The input parameters are: T = 2 x 10SK; Nth = 109cm-3; _f = 3.0; e =

0.05; B = 200G; D = 10Scm; A = 10i6cm2; 0 = 45 °. Figure 4.2 shows the

first six harmonics of emissivity in each polarization mode, using the same plotting

convention, with the x-axis now being harmonic number. Figure 4.2(a) shows the

ordinary mode (s = 1 - 6) and Figure 4.2(5) shows the extraordinary mode (s =
2 - 7). Harmonics of the absorption coefficient are qualitatively very similar. The

polarization is shown as the solid line in Figure 4.10.

I first point out some general features shared, to a greater or lesser extent, by
all spectra of the TNT type.

1. At the lowest frequencies, the TNT spectrum closely follows a spectrum
produced by purely thermal electrons, except in certain wavebands where the TNT

spectrum can be enhanced over the TH spectrum.

2. At the highest frequencies, the TNT spectrum is indistinguishable from a
purely NT spectrum, i.e. the bulk thermal population does not contribute to the

highest energy radiation.

3. The transition between these two regimes is characterized by two frequencies,

Z
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designated ul and v2. Their approximate locations are shown on Figure 4.1. In the

region between these two frequencies the TNT spectrum can have a steep positive

slope.

All of these features are understood by noting that the expressions for the emis-

sion and absorption coefficients, equations (4.3) and (4.4) (or eqs. [4.8] and [4.9]),

are linear in f, which itself is linear in fth and fat. In other words the radiative

transfer equation (4.1) becomes

I(_,8) - jth + jnt [1 - exp(--(nth + n,_t)D)] ergs(sec sterad Hz cm2) -1 (4.14)
t';t h + I_nt

for each polarization mode.

This additivity is clearly seen in Figures 4.2(a) and 4.2(b). The overall inten-

sity spectrum in each polarization is determined, at each frequency, by whichever

component (TH or NT) is dominating in each of emission and absorption at that

frequency.

For example, the lower transition frequency, vl, is that at which the intensity

of the TNT spectrum begins to exceed that of the TH spectrum, neglecting the

enhancements. At frequencies below vl thermal emission and absorption dominate;

that is, we are in the Rayleigh-Jeans regime and the slope on a log(Flux Density)

vs log(Frequency) plot is 2. Nonthermal radiation is completely suppressed by the

thermal plasma, again neglecting the enhancements.

At frequencies near _'1 the nonthermal emissivity begins to contribute, although

absorption is still dominated by the thermal electrons. Above vl the nonthermal

emissivity continues to grow relative to the thermal, eventually dominating com-

pletely at some frequency between vl and v_.

Similarly, as the frequency is increased to approach the upper transition fre-

quency v2, thermal absorption contributes less and less relative to that due to the

nonthermal electrons. Since nonthermal emission is already dominating thermal

emission, above v_ the spectrum is produced completely by nonthermal processes.

Between Vl and _'2 the interesting situation arises in which the nonthermal parti-

cles are emitting more radiation than their thermal counterparts (jnt > jth), but the

thermal particles are able to absorb much more of it than nonthermal self-absorption

alone can account for. This additional thermal absorption of nonthermal radiation

explains the steep slope seen in this region of the spectrum. In Figure 4.1, the slope

between 2.5 and 5.5 GHz is ,,_ 4.3. Optically thick TNT slopes as steep as 7 have

been seen in the course of this study, and it is likely that steeper slopes are possible.

Note, as in Figure 4.3(b) below, that although steep slopes are naturally accounted

for in this model, they are not inevitable, especially at very high temperatures.

The index of refraction for the plasma of Figure 4.2 is ,-_ 0.8 at 4 × 10SHz, and

decreases rapidly for lower frequencies. This is the regime of Razin suppression,

close to the plasma frequency cutoff.

Some additional discussion of point 1 above is now in order, the enhancements

mentioned there being of prime observational importance. The lowest harmonics

in a gyrosynchrotron spectrum do not overlap and blend as much as the higher

ones, as can be seen in Figures 4.2(a) and 4.2(b). This is especially evident for

thermal radiation, and the harmonics become still narrower for high viewing an-

gles. The low harmonics of a nonthermal spectrum are broader, since an energetic

m

=

=
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electron resonates with a Doppler-shifted gyrofrequency, Vb/7. The abundance of

high energy electrons in a power-law distribution effectively creates a low-frequency

broadening of each harmonic in the NT spectrum. As discussed above and shown

in Figure 4.2, for v < Vl the NT harmonics will have lower peak intensities than the

TH harmonics -- the spectrum is in the Rayleigh-Jeans regime. Nevertheless, the

Doppler broadened NT harmonics can contribute in the frequency bands between
the TH harmonics. Within these bands, not only does the NT emissivity exceed the

TIt, but the TH absorption is also too low to suppress the NT radiation. It is this

limited NT contribution, between the TH harmonics, which produces the enhance-

ments seen in the theoretical spectra. Since TIt harmonics become narrower with

either decreasing temperature or increasing viewing angle, it is evident that these

NT enhancements can occur between any of the higher TH harmonics that are not

sufficiently blended together (cf. Figures 4.3(a) and 4.9 below).

4.4.2 VARIATIONS WITH PARAMETERS

Figures 4.3 - 4.9 show how a basic TNT microwave spectrum (shown in the

figures as a dot-dash line), similar to that of Figure 4.1, will typically vary as each

of the input parameters is varied in turn. I shall discuss each of them, but first

I must point out that these displayed variations, although covering a wide range

of values of the parameters, are still somewhat limited. In effect I have taken

seven mutually orthogonal excursions from a single point in 7-dimensional parameter

space. Nevertheless, the general trends depicted will certainly hold throughout much

of parameter space.

I will use the following notation in this discussion: Ip_k is the intensity at Vpeak,

the peak frequency. RJ refers to the the low-frequency (Rayleigh-Jeans, thermal)

portion of the spectrum, having u < ul, whether or not enhancements are present.

PC refers to the Primary Component (in the nomenclature of SGH1 and SGH2),

i.e. all frequencies _ > Vl. The enhancements that appear on the optically thick

side I will designate H-n, with n = 1, 2, etc. H-1 will always refer to the o-mode

nonthermal enhancement below the gyrofrequency (Ub = 1.12 X 109 Hz for the basic

spectrum). Recall that these features are not harmonics, but rather are produced
between the thermal harmonics. In §4.5 I will identify one or more of the H-n with

the secondary components of Stb_li, Gary, and Hurford (SGH2).

I do not display variations with area, A, since this factor is a premultiplier and

thus simply raises or lowers the intensity of the spectrum in toto, leaving its shape

unaffected.

The basic spectrum which is varied has these input parameters: T = 7 x l0 T K;

Nth = 109 cm-3; _ = 4.0; e -- 0.05; B = 400 G; D = l0 s cm; 0 = 45°; A = D 2 =

1016cm 2. Note that the vertical scales of Figures 4.4 - 4.10 may vary.

TEMPERATURE, T

Figures 4.3(a) and 4.3(b) show that as the temperature rises, the TNT spec-

trum varies in four major ways: (1) The underlying thermal spectrum is raised in

intensity (and shifts to a slightly higher peak frequency). This shifts the RJ part

of the TNT spectrum upward in intensity. (2) Ip_k increases. (3) up¢_k moves to
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higher frequencies. (4) The It-n features become less prominent due to the increased

Doppler-broadening of the thermal harmonics. At the highest temperatures, the

optically thick spectrum is quite smooth, changing character gradually from classic

thermal (slope ,,_ 2) to nonthermal (slope ,,, 3) (Dulk and Marsh 1982; SGItl). At

intermediate temperatures, the H-n appear and the transition is more abrupt, hav-

ing an optically thick slope > 3. As the temperature is lowered, the tt-n become

more apparent, due to the narrowing of the thermal harmonics, i.e. the wavebands
between the thermal harmonics are wider.

DENSITY, Nth

Figure 4.4 shows variations with density of the basic TNT spectrum. The main

changes as the density increases are: (1) The plasma frequency cutoffmoves to higher

frequencies, reaching 1 Gttz at Nth "_ 101° cm -3. The total number of thermal and

nonthermal particles increases since N,_t (x Nth, all else remaining unchanged (eq.

[2.52]). Thus (2) Ipe_k increases relative to nJ, and (3) upe_k increases, both result-

ing from the increasing optical depth of the source. (4) As the plasma frequency

increases, the H-n structures are successively lost below the cutoff. As H-n is lost,

H-(n+l) is enhanced.

SPECTRAL INDEX,

Hardening the spectral index increases the nonthermal nature of the TNT spec-

trum (Figure 4.5). Specifically, (1) Ipeak increases dramatically with respect to RJ;

(2) uveak increases; (3) The H-n features become increasingly pronounced, consistent

with our discussion at the end of §4.4.1; (4) The lower transition frequency ul is

shifted downward, i.e. the TNT spectrum departs from TH sooner. (5) The width

of the PC increases for two reasons. As the NT contribution increases, more of the

optically thick spectrum is at frequencies above u2, and has a slope of _ 3 (Dulk

and Marsh 1982; SGH1), whereas the slope between ul and v2 is steeper than this.

The optically thin slope flattens with harder _fwhich further widens the PC.

The dashed line in Figure 4.5 is the associated purely thermal spectrum, and is

closely approached by _f = 8.

LOW-ENERGY CUTOFF, e

We see in Figure 4.6 that as e rises, i.e. as the nonthermal tail "climbs up"

the Maxwellian to lower energies, the dominant changes are (1) to the PC which

increases in intensity relative to RJ, and (2) to the H-n which also rise relative to

RJ, consistent with our previous discussion. The PC drifts slowly to higher upe_k.

Decreasing e below what is shown renders the TNT spectrum indistinguishable from

the associated TH spectrum (dashed line), until at some very low intensity level the

optically thin thermal slope of ,,_8 - 10 will change to ,,, 1.2 - .9_ (§4.5.1), when the

nonthermal particles are finally able to contribute to the radiation.
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MA GNETIC FIELD, B

The intensity of gyrosynchrotron radiation is very sensitive to magnetic field

strength, increasing greatly with B. To compensate for this, the three spectra in

Figure 4.7 have been multiplied by 400/B for clarity. Increasing the magnetic field

strength from B1 to B2 also translates any spectral feature to a higher frequency.

This effect is nearly linear and the frequency translation can often be approximated

by a factor of ,,_ B2/B1, since a given feature is found near a particular multiple of

the gyrofrequency Vb _ 2.8 × 106B. This rough scaling of frequency with B holds

as long as the feature at the lower field strength is not too close to vp, the plasma

frequency.

SOURCE DEPTH, D

Figure 4.8 shows the change with depth. Increasing the source depth is commen-

surate with increasing its optical depth, since the total number of particles along

the line of sight increases. Thus we see the PC rise in intensity and shift to higher

vpeak. The H-n are unaffected over a wide range of source depths, being reduced for
the smallest D's.
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Figure 4.7: Variations with magnetic field strength 50 G < B < 1600 G. Note that the
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Figure 4.9: Variations with observation angle between the line of sight and the magnetic

field, 10° < _? < 85°. The bold line for 6 = 10° is for clarity.

OBSERVATION ANGLE, 0

As is known, the harmonic structure of gyrosynchrotron radiation is much more

pronounced when viewed at high angles to the magnetic field (cf. Takakura 1960;

Takakura and Scafise 1970). This results from all harmonics having both a greater

contribution to the spectrum, and a narrower bandwidth. Of course the nonthermal

harmonics are still Doppler broadened compared to the thermal harmonics.

The observed consequences are that Ipe_k increases and shifts to higher up_ak,

while the individual enhancements become much more apparent. This is borne out

in Figure 4.9. In addition, I find that at low angles, the PC narrows and can become

quite sharply peaked.

4.4.3 POLARIZATION

In Figure 4.10 I show the fractional polarization

1I_I+ -1-
I+ + I_ (4.15)

for the TNT spectrum of Figure 4.1 (solid line) as well as for the basic spectrum

(dot-dashed line). These polarization characteristics are typical for TNT spectra in

general: (1) The optically thin emission is x-mode polarized, and can exceed 50%;

(2) Neglecting enhancements, the average optically thick polarization is -._ 5 - 25 %

in the o-mode; (3) The o-mode polarization of the enhancements can exceed 50_;

(3) Where pure thermal emission occurs between the It-n, it is unpolarized. (4)

Below the x-mode cutoff, all of the emission is, of course, o-mode. These results are
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Figure 4.10: The fractional polarization (Eq. [4.15]) for the TNT spectrum of Figure 4.1

(solid line), and for the basic spectrum of Figures 4.3 through 4.9 (dot-dashed line). Below

their respective x-mode cutoffs, the spectra are 100% o-mode polarized.

consistent with what is expected from one or the other of thermal and nonthermal

particle distributions (Ramaty 1969).

I stress that the polarization discussed here is as it leaves a homogeneous source,

with no consideration given to an intervening plasma. It is known that polariza-

tion can be reduced by propagation effects, and even reversed if the component

of magnetic field along the line-of-sight goes to zero between the source and ob-

server (Zheleznyakov 1970; Bandiera 1982). Bogod et al. (1990), and Brosius et al.

(1991) provide observational examples of these effects. Caution is advised in drawing

conclusions based on polarization data without an investigation of the intervening

plasma, especially at'the lower frequencies.

4.4.4 THE LOWEST HARMONIC

The lowest harmonic which contributes to a spectrum has an interesting structure

of its own. it is invariably double-peaked, whether the gyrofrequency is above or

below the plasma frequency. It is always o-mode (below the x-mode cutoff) and can

be any harmonic of the gyrofrequency (it is s = 1 only for up <_ I/5). It is possible to

observe this harmonic if it corresponds to s _> 3 (cf. §4.5).

To understand this structure, we surmise from Figure 4.2 that the existence of

twin peaks is independent of the particular electron distribution function used. This

leads us to choose a _f-function distribution, f ,,_ _f('), - ")'o), insertion of which into

equation (4.8) for a single fixed harmonic 8 = S, leads us to the relatively simple

m
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equation

47r2e2N 1 v " (cotO _ flocosCs'_ ]2J_- = I cos 0 I c (1 + a_+) I_o .a° L ", n:l: sin 0 ] Js(xs) - Go sin Cs g's(zs) •

(4.16)

In Figure 4.11 I plot the o-mode emissivity for S = 1 for various values of _o,

where the different linetypes are used for clarity only and do not correspond to

our usual plotting convention. Notice that higher energy electrons radiate at lower

Doppler-shifted frequencies, as expected. The double-peaked structure is confirmed

for the o-mode, and persists but is modified for higher S (not shown).

This structure is related to the variability with frequency of the _-polarization

coefficient, equation (4.6). When a0 is set equal to a constant, the two peaks do not

appear. Equation (4.6) for a0q- is a monotonically decreasing function of frequency,

but differs markedly in the two polarization modes. In the o-mode, ae+ ranges from

)>> 1 at the lowest frequencies, to asymptotically approach unity at high frequencies.

On the other hand, ae- decreases only gradually, from 0 to -1 (in fact it is 0 only

at the plasma frequency which is always below the x-mode cutoff [§4.2.1]). It is thus

the changing interplay between the two terms in square brackets in equation (4.16)

(and the analogous terms in eqns. (4.8) and (4.9)) which produces the observed

structure in the o-mode harmonic. That is, at the higher frequencies within this

harmonic, the two terms generate the usual rising and falling harmonic structure.

As the frequency is decreased, however, at some point the increasing value of ae+

gives additional weight to the first term so that it again dominates. Finally, at the
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Figure 4.11: The first contributing harmonic (in this case s = 1) of the emissivity from

a 6- function electron distribution, as discussed in the text, for % -- 1.01, 1.1, 2.5, 6. In

this figure the different line types are for clarity only and do not correspond to our usual

plotting convention. The input was N = 2 x 109cm -a, B = 700G, and 0 = 45°.
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lowest frequencies, either Razin suppression or a lack of energetic particles (as in

a Maxwellian) cuts off this "anomalous" harmonic entirely. Though this effect can

persist for higher harmonics (cf. Fig 4.2[a]), the fact that ao+ is approaching unity

means that, for the higher harmonics, it is less apparent (the first term in square

brackets is not as heavily weighted). I remark that this o-mode structure has been

noticed before (Tamor 1978), but the explanation of it was incorrect (Tamor 1979).

4.5 MODELING OBSERVED MICROWAVE SPEC-

TRA

4.5.1 A "TYPICAL" SPECTRUM

I have tested this model against observations by fitting a "typical" spectrum

from SGH1. Those authors state: "About 80% of the minor spectral components

occur on the low frequency side of the main peak in the spectrum, i.e. at frequencies

lower than the peak frequency." In Figure 4.12 I show my fit to such a spectrum

(SGItl, their Fig. 2d). The deduced parameters are: T = 7.6 x 107K; Nth ----

6 X 109cm-3; _ = 4.5; e = 0.077; B = 340 G; D = 5.0 x 106cm; A = 5.0 x 1017cm2;

0 = 57°.The reduced x-squared statistic is 1.422, giving a x-squared probability
function of 99.4%.

It is seen that our fit is very good for v _> 2 GHz, and less acceptable at lower

frequencies. This is to be expected, for the following reason. It is difficult for

the first or second harmonics of gyrosynchrotron radiation to escape from the solar

corona, because of the likelihood of their being reabsorbed as second and third

harmonics of a weaker magnetic field. This effect is strongest for the gyrofrequency,

and diminishes with successive harmonics. We thus expect that gyrosynchrotron

radiation from a homogeneous source will provide a good fit only at frequencies

v >_ 3Vb _ 8.4 X 106B Gitz, with B the deduced magnetic field strength. In other

words, I generally expect the theoretical H-1 and H-2 enhancements to be largely

unobservable, while the observed H-3 feature will be somewhat modified. This

is consistent with what we see in Figure 4.12, where the "secondary component"

near 2 GItz corresponds to H-3 (3Vb = 2.8 GHz). I have also fit the spectrum

assuming this enhancement to be both H-2 and tI-4, but the lowest X 2 results for

H-3. At frequencies lower than 3Vb, external absorption, other emission mechanisms,

or source inhomogeneities may be important.

A major result of the TNT model is the natural production of low-frequency

enhancements. The presence, both observationally and theoretically, of these fea-

tures provides a powerful diagnostic for flare magnetic field strengths and plasma
temperatures.

From the discussion at the end of §4.4.1, it follows that the dips in the spectrum

between the enhancements mark the harmonics of the thermal gyrosynchrotron spec-

trum. The frequencies of these local minima are then related to the magnetic field by

vl.m. _ 2.8 × 106sB with s a positive integer. The separation in frequency between

successive minima changes with the s chosen, and so observation of 2 or more such

minima can rapidly lead to a determination of the field strength in the radiation-

producing region, to within _< 10 G. This is how the magnetic field strength was
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Figure 4.12: A theoretical fit to Fig. 2d of St_ili, Gary, and Hurford 1989. The flare

occurred 1981 July 24. The emission is assumed to be entirely gyrosynchrotron radiation

from a TNT distribution function. Our plotting convention of Figures 4.1 - 4.9 is used.

This complex observed spectrum is well fit except at the lowest frequencies, as discussed

in the text. The derived parameters are: T = 7.6 x 107K; Nlh = 6 x 109 cm-3; _ = 4.5;

e = 0.077; B = 340G; D = 5.0 x 106 era; A = 5.0 x 1017cm_;/7 = 57°.
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deduced for the spectrum of Figure 4.12.

The intensity of the radiation at these local minima also provides a diagnostic for

the temperature in the region. Deep minima imply low-intensity thermal emission

and thus a low temperature (cf. Fig 4.3[a]). The converse applies to shallow minima

(Fig 4.3[b]). Using the first observed minimum at or above 3Vb provides the best

estimate for the temperature, since higher frequencies are increasingly influenced by

the nonthermal particles. A comparison of the TH and TNT spectra in Figure 4.12

bears this out. The temperature deduced for Figure 4.12 is hotter than the typical

flare soft X-ray plasma, and consistent with the superhot component seen in hard

X-rays by Nitta, Kiplinger, and Kai (1989).

Since vp_k often occurs near or above the 10 th harmonic, the negative slope of the

optically thin part of the spectrum provides a diagnostic for the nonthermal electron

spectral index, through the empirical approximation (Slope) ,,, 1.22 - 0.95 (Dulk

and Marsh, 1982). If brightness temperature is measured instead of flux density, the

relation is: (TB Slope) ,-_ -0.78 - 0.95. These expressions are approximately valid

for 5 < 5 and 20 ° <:/_ < 80 °. For 8 near 20 °, the range of 5 can be extended to ,,_ 7.

The presence of fine structure along the steep optically thick slope between ul and

u2 indicates that the higher order H-n structures are not completely blended. This

in turn can provide a diagnostic for the viewing angle 8, to which these structures

are very sensitive (cf. Figure 4.9).

The success of the eight parameter fit for a spectrum as complex as that of

Figure 4.13 is encouraging. For instance, only one "primary" and one "secondary"

component would require eight parameters for a two-triangle description: two peak

intensities, two peak frequencies, and four associated slopes. I also point out that

OVRO spectra sample up to 40 frequencies between 1 and 18 Gttz (34 in Figure

4.13), a number significantly greater than our 8 fitting parameters.

In practice, the TNT model usually provides a seven parameter fit, because the

optical depth is determined by the product ND, density entering independently

only at the lowest frequencies (near vp).

As discussed above, the most easily determined parameters are magnetic field

strength B, temperature T, and spectral index 5.

Having determined three parameters using gross features of the spectrum, one is

faced with an iterative process for determining four more. ND determines in part

both the peak frequency and the relative intensities of the main peak and enhance-

ments. The shapes of the main peak and enhancements can be subtly influenced by

e, as well as their relative intensities and to some extent Vpe,k. If some fine struc-

ture is seen on the steep, positive, optically-thick slope, the viewing angle _ can be

determined very reliably for each iterative choice of ND and e. The best-fit area

A is uniquely determined for each combination of ND, e, and 0. Having iteratively

achieved an acceptable fit above ,,_ 3vb, one can adjust N holding ND constant, to

improve the fit at lower frequencies. This in turn may require a readjustment of

since the enhancements and positive slope fine structure can be subtly affected by

changes in N. As discussed above, however, achieving a "better fit" at frequencies

below ,,_ 3vb is not necessarily the same as determining N to higher accuracy, since

the role of external absorption and other emission mechanisms is unclear at these

low frequencies.

Given our identification of the the enhancement near 2 GHz as H-3, I believe that

m
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the parameters deduced for Figure 4.12 are each determined to within 10% accuracy,

and some of them (B, 6, T, 0) to better than 5%. Because of the ambiguity in N

and D mentioned above this accuracy applies only to the product ND.

It is interesting that the deduced value for ND implies, for coronal densities,

a very small source depth -- on the order of 100 km. When combined with the

deduced area, one is led to the possibility that the observed gyrosynchrotron emis-

sion originates in a thin "disk" somewhere in the leg of a magnetic loop, rather

than throughout the loop volume as generally supposed. In retrospect, this is quite

reasonable for two related reasons. First, the converging magnetic field becomes

stronger as the loop is traversed from its apex toward the chromosphere. Secondly,

the converging B-field means that particles can mirror, which in turn increases

their momentum perpendicular to the field (although recall that here I have used

an isotropic pitch-angle distribution). Both effects increase the intensity of gyrosyn-

chrotron emission, so one might expect to preferentially observe the lower portions

of a loop during a burst. If we do in fact observe such a narrow emission region,

this could help explain why the TNT model for a homogeneous source can work as
well as it does.

4.5.2 THE PEAK FREQUENCY

It is known that the peak frequency of a microwave burst changes slowly if at

all during the burst's evolution. This is in stark contrast to the predictions of the

simpler models in which changes in such quantities as temperature, density, magnetic

field strength, or viewing angle produce peak frequency shifts far in excess of those

observed (SGH1). In addition, the enhancements are seen to rise and fall together

with the main peak (SGH2).

It is beyond the scope of this paper to model any flare in toto, but Figures

4.3 - 4.9 indicate that the parameter e is a likely candidate to explain the gross

evolutionary changes observed in a flare, perhaps in concert with small changes in

6. Both the "primary" and "secondary" components vary in unison with e, and

up_k stays relatively fixed.

The case for e can be made more plausible by recognizing that up_k is deter-

mined by the optical depth, i.e. absorption coefficient. This in turn depends on the

derivative of f with respect to 7, and all e-dependence in f can be factored out of the

derivative and indeed out of the summation in equation (4.9). This is not true for

any of T, 5, B, or 0, while density and source depth directly alter the optical depth

by changing the number of particles along the integrated line of sight. As discussed

previously (§§2.1, 4.3), e is related to the electric field strength in the acceleration

region, which is expected to be a naturally evolving physical quantity in a flare.

The constancy of I/peak and the coevolution of the components could also be due

to a changing source area which, as mentioned earlier, is a premultiplier. The area

change would have to be independent of other physical quantities, however, so as not

to alter the optical depth of the source. Microwave imaging at multiple frequencies

will help resolve this point.

I note that the approximation for up_k (Dulk and Marsh 1982), within the range
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of/5 discussed above, must be ammended for this model by a factor of

10keV]

since t?c, can be much higher than was assumed by those authors. This correction

is valid for Ccr up to at least 150keV.

4.6 MICROWAVE SUMMARY

In this chapter, I have presented a new approach to modeling solar microwave

bursts, which provides new physical insight into high resolution microwave spectra.

The model combines elements of the previously disparate thermal and nonthermal

models, allowing both of these populations to coexist during a flare. This shifts our

perspective from asking whether flare emissions are produced by thermal or by non-

thermal particles, to asking how much of a contribution does each population make.

The assumption of a thermal/nonthermal electron distribution is both physically

reasonable and has important observational consequences.

For the large class of observed flares showing enhancements on the low-frequency

side of the spectral peak, I find that this model can successfully address three ob-

servational challenges:

(1) The enhancements themselves are explained as nonthermal radiation pro-
duced between the lowest of the thermal harmonics. Within these wavebands the

otherwise dominant thermal processes are incapable of suppressing the nonthermal

emission.

(2) The appearance of steep slopes on the optically thick side of the spectrum is

accounted for by the thermal absorption of nonthermally produced radiation.

(3) The relative constancy of the peak frequency throughout a burst, and the co-
evolution of the low frequency enhancements, is made plausible if the major contrib-

utor to the evolution of the electron distribution is a changing electric field strength.

Physically, the TNT distribution function is placed within a plausible and in-

ternally consistent framework, by assuming the presence of current sheets in the

flaring plasma. The current sheets provide both primary heating of the plasma, and

nonthermal acceleration of particles.

I have demonstrated the applicability of this model by fitting an observed high

resolution microwave spectrum. The sophistication of such present generation ob-

servations shows the limitations of simpler approaches. The approach presented

here can be used to directly model such observations, and can provide us with a

more unified perspective from which to study solar flares.



Chapter 5

SUMMARY, PROGNOSIS,
AND CONCLUSIONS

5.1 SUMMARY

This dissertation has laid the foundation for a fundamentally new approach to

thinking about and modelling solar flares. The primum mobile of this approach is

the coexistence of thermal and nonthermal particles in the flaring plasma, and their

joint contribution to the observed emission from a flare, particularly the hard X-rays

and microwaves. The existence of such a thermal/nonthermal plasma reflects the

physically reasonable assumption that both plasma heating and particle acceleration

are integral parts of the flare phenomenon.

The physical cause of the heating and acceleration is proposed to be macroscopic

PC electric currents (current sheets) in the solar atmosphere. This is consistent

with the observation that flares are strongly associated with stressed, nonpotential,

current-carrying magnetic fields. A fraction of the current-carrying particles are

boosted to high energies through the runaway acceleration process, while the bulk

of the current is subject to Joule dissipation, thereby heating the ambient plasma
in which the current sheets are embedded.

The observed hard X-ray emission is then a combination of thermal

bremsstrahlung, arising from the heated plasma, and nonthermal thick-target

bremsstrahlung, arising from either some or all of the current-carrying particles

being injected into the cooler, denser chromosphere. The observed microwave emis-

sion is gyrosynchrotron radiation, generated by the mildly relativistic electrons spi-

ralling around magnetic field lines. This is not expected to be significant within the

current sheets themselves, which are either coaligned with any magnetic field, or

exist in magnetically neutral regions. Any nonthermal particles scattered out of the

sheets will, however, have sufficient perpendicular momentum (with respect to the

magnetic field) to produce this radiation, in conjunction with the already heated

plasma into which they are scattered. The presence of such DC current structures

in solar flares imparts both thermal and nonthermal characteristics to both the ob-

served hard X-rays and microwaves. The proposed current sheets thus provide an

internally consistent physical framework within which to study flares.

Two possible flare models incorporating current sheets were discussed, and more

85



86 CHAPTER 5. SUMMARY, PROGNOSIS, AND CONCLUSIONS

are undoubtedly possible. One model involves a large current sheet in the solar

corona, situated atop an arcade of magnetic loops (Fig 1.3). Runaway accelerated

electrons are scattered out of the current sheet, to stream down the legs of the loops

to the chromosphere, where they produce thick-target bremsstrahlung. On their

way, these same particles could emit gyrosynchrotron radiation, together with the

thermal plasma within the loops. In addition, the current sheet heats the coronal

plasma at the top of the magnetic arcade. When the emission measure of this hot

plasma becomes large enough, the thermal bremsstrahlung generated here becomes

visible as the superhot thermal component of hard X-rays (Figs 3.8 and 3.9). The

spatial separation of the thermal and nonthermal hard X-ray components in this

model could be seen by a high resolution hard X-ray imager (§3.5).

The other model, only briefly discussed, involves > 104 oppositely-directed cur-

rent sheets aligned with, and residing within, one or more magnetic loops in the

solar corona. In this picture the currents would terminate in the denser, cooler chro-

mosphere, and all of the current-carrying particles (drifting thermal and runaway

accelerated) would generate thick-target hard X-ray bremsstrahlung. The currents

would, of course, also heat the plasma throughout the loop, generating thermal hard

X-ray bremsstrahlung. In addition, some of the accelerated electrons will be scat-

tered out of the current sheets, into the surrounding plasma within the loop, giving

this plasma a thermal/nonthermal character. It is this ambient plasma which is

the source of the gyrosynchrotron microwave emission. In this model, the superhot

thermal component of hard X-rays could, paradoxically, be produced by current-

carrying (i.e. nontherma D electrons, as well as by a thermal plasma. Which of them

would dominate would depend on the heat transport properties of the plasma.

Electron distribution functions were obtained (Chapter 2) for ther-

mal/nonthermal plasmas. Within current sheets (§2.2), there are runaway accel-

erated electrons (§2.2.1) and a drifting thermal population (§2.2.2). The ambient

plasma, in which the current sheets are embedded, also has a thermal/nonthermal

character (§2.3) due to the scattering of particles out of the current sheets.

Various of these distribution functions were used to calculate hard X-ray spectra

(Chapter 3) and gyrosynchrotron microwave spectra (Chapter 4). For the hard X-

rays, six physical input parameters are required for a spectrum, the same number as

in the (less physical) conventional modeling done to date. These are: temperature

and emission measure to characterize the thermal emission; electric field strength,

current sheet length, and electron density in the current sheets, to characterize

the nonthermal electrons; and thick-target area which characterizes the nonthermal

source. The effect of each of these parameters on the resultant theoretical spectra

was investigated (§3.3). The thermal/nonthermal approach was used to fit two

observed spectra (§3.4). It was found that only five parameters are required in

practice, and excellent results were obtained. The thermal/nonthermal approach

was also employed to model two-ribbon flare s imaged in hard X-rays (§3.5), and the

importance of such future observations was emphasized.

For the microwave spectra (Chapter 4), it was found that previously unex-

plainable features could be naturally accounted for within the context of the ther-

mal/nonthermal approach. In particular:

(1) Low frequency enhancements were seen to be nonthermal radiation produced
in wavebands where otherwise dominating thermal processes could not suppress it;

w



5.2. LOOKING TO THE FUTURE 87

(2) Steep positive slopes on the optically thick side of the spectrum were ac-

counted for by the thermal absorption of nonthermaily produced radiation;

(3) The coevohtion of spectral features, and the relative constancy of the peak

frequency throughout a flare, are made plausible if the major contributor to the
evolution of the electron distribution function is a changing electric field strength.

Eight input parameters are required for a theoretical microwave spectrum, which

was shown to be an acceptable number. These are: temperature and thermal elec-

tron density which characterize the thermal particles; low-energy cutoff and spectral

index for the nonthermal particles; magnetic field strength, source depth and area,

characterizing the source; and line of sight angle to the magnetic field, which char-

acterizes our orientation to the source. Once again, the effect of each of these pa-

rameters on the resultant spectra was investigated (§4.4). Once again, an observed

high resolution spectrum was fit using the thermal/nonthermal approach (§4.5) with

excellent results.

5.2 LOOKING TO THE FUTURE

The ideas presented in the course of this dissertation show great promise for

elucidating the physics underlying solar flares. There are many possible applications,

extensions, and refinements of these ideas. I will now briefly discuss some of them.

The first, and most important, future task is to apply the thermal/nonthermal

approach in detail to flares for which high resolution spectra exist in both hard X-

rays and microwaves. No such data sets were in existence during the development

of this approach. Now however, following the successful deployment of NASA's

Gamma Ray Observatory satellite, it is hoped that spectra taken with the Burst

And Transient Source Experiment (BATSE) modules will be of high enough quality

to distinguish the superhot component in the hard X-rays. These will be the best

spectra ever obtained with a scintillation type detector, reaching photon energies as

low as 15 keV, with a full width at half maximum of 4 keV. In addition, in December

of 1991, a cooled germanium:detector (similar to that used for the observations in

Figs 3.8 and 3.9) will be on a long-duration balloon flight in Antarctica. This

detector goes down to 12 keV with FWHM of ,_ 1 keV. If hard X-ray producing

flares are seen at that time, and if they occur during the hours when Owens Valley

Radio Observatory is observing the sun (1600- 2400 UT), this will provide an

unprecedented data set to which this approach can be applied.

The detailed modeling of such simultaneous observations will help us to uncover

some of the physics underlying the flare phenomenon. Fitting observed high resolu-

tion spectra in both wavelength regimes, and following the evolution of these spectra

throughout the course of a flare, can tell us many things. First and foremost, we can

learn something about the physical link between the microwave-emitting and hard

X-ray-emitting plasmas. Such a link has long been known to exist (see Figs 1.1 and

1.2), but its nature has never been satisfactorily elucidated. Using a parameterized

form of equation (2.48), this connection can now be made.

Seeing how the various parameters evolve throughout a flare will give us much

needed insight into flares. For example, one current popular notion is that non-
thermal beams, entering the chromosphere, evaporate much of the chromospheric
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material (cf. Tandberg-ttanssen and Emslie 1988). If the density of the microwave-

emitting plasma is found to increase during a flare, this could be evidence that the

runaways are indeed driving such an evaporation.

It was argued in §4.5 that a changing electric field strength may be the most

important pa[ameter for characterizing the evolution of a flare. If this proves to be

true, then it may be possible to deduce the threshhold conditions necessary for the

onset of a flare, after analyzing many flares in this manner.

We can also learn about heat transport within flares, since the microwave-

emitting plasma outside of the current sheets can be no hotter than the current

sheets which are heating it. Thus constrained, following the relationships between

the hard X-ray and microwave temperatures and emission measures will tell us about

the heating process itself.

The addition of observations in other wavelength regimes (e.g. soft X-rays of

1 - 10 keV, and IIa) to the data set will provide still more information about

energy and particle transport within flares, as well as helping further to constrain

the parameters within the flare plasma.

In summary, the detailed modeling of several "typical" flares, using the ther-

mal/nonthermal approach, will go far to improving our understanding of flares, and

can provide insight as to how best to approach less well observed events (e.g. by

knowing how various parameters typically evolve).

In order to get the most scientific return from the time invested in such modeling,

the most accurate possible formalism must be used. Thus the results and corrections

due to to MacNeice et al. (§2.4) must be extended to the regime of applicability to

solar flares, and incorporated into the runaway electron distribution functions used.

A study of various current sheet instabilities is essential for gaining a deeper

physical understanding. For example, in supposing the microwaves to be produced

by energetic electrons scattered out of the current sheet, it is implicit that Coulomb

scattering cannot be the scattering mechanism. This is because the runaway elec-

trons are nearly collisionless with respect to Coulomb collisions. However, if the

current drift velocity exceeds the threshold for a plasma instability, turbulence can

be generated in the current sheet(s), greatly increasing the collision frequency of

the nonthermal electrons (e.g. IIolman 1985). Candidate instabilities for generating

such "anomalous resistivity" are the ion acoustic, electrostatic ion cyclotron, lower

hybrid drift, and anomalous Doppler resonance instabilities. Each of these should
be examined for their relevance to solar flares.

Another role for current sheet instabilities in flares is the generation of very

fast time structures. Millisecond spikes have been observed in both hard X-rays

(Kiplinger, et al. 1984) and microwaves (Gary, Hurford, and Flees 1991). Such

rapid fluctuations are likely to be caused by sudden disruptions of the heating and

acceleration processes. The above mentioned instabilities could have a role in these

disruptions, and in addition the two-stream instability (associated with the runaway

electrons) and the tearing-mode instability (for sufficiently thin current sheets) may

be important.

A study of the relevant time scales (growth rate, saturation, heating) for all of

these instabilities could be compared with observed time scales (rise time, duration,

fall time) for such spikes. It is hoped that one or two flares to be modeled as

described above will exhibit such rapid time structures. In this case, a great deal

==

w
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of information can be learned, both about the large scale (thermal/nonthermal)

properties of the flare plasma, and the smaller-scale physics taking place in the

current sheets. Thus a significant step will be taken toward realizing the goal of

understanding the underlying physical processes in solar flares.

It is likely that the ideas contained in this dissertation have many applications to

astrophysical objects other than the sun. Indeed, any system showing both strong

magnetic field gradients (in either space or time) and particle acceleration, is likely

to contain DC currents, and is thus amenable to a similar analysis. Such systems

could include flare stars, close binary stars, accretion disks, neutron stars, galactic

nuclei, and jets and lobes of radio galaxies and quasars.

5.3 CONCLUSION

The grand conclusion of this work may be summed up in one sentence: The ther-

mal/nonthermal approach to solar flares, within the framework of DC electric field

heating and acceleration, provides a unified, physically reasonable perspective from

which to study the flare phenomenon.

It is now possible, in practice as well as in principle, to deduce the relative contri-

butions of thermal and nonthermal processes to the radiation that we observe from

flares. This has already allowed us to explain previously unexplainable phenomena,

such as microwave spectral features and the presence of a superhot thermal hard

X-ray component. It will, I hope, lead to yet other insights which can be glimpsed

only dimly at present.
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